
Sara Kropf

Asymptotic Analysis of Sequences Defined by Automata

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Technischen Wissenschaften

Alpen-Adria-Universität Klagenfurt

Fakultät für Technische Wissenschaften

Betreuer und Erstgutachter
Univ.-Prof. Dr. Clemens Heuberger
Alpen-Adria-Universität Klagenfurt
Institut für Mathematik

Zweitgutachter
Prof. Dr. Stephan Wagner
Stellenbosch University
Department of Mathematical Sciences

Klagenfurt am Wörthersee, Juni 2015

“The shortest path between two truths in the real domain
passes through the complex domain.”

Jacques Hadamard, 1865–1963

Abstract. In cryptography, scalar multiplication with large numbers is a frequently used
operation. It is usually implemented using a digit representation of the scalar. The choice
of the representation influences the running time of this scalar multiplication. Thus it is one
possibility to optimize cryptographic algorithms and increase the security level.

More specifically, the running time of the multiplication depends on certain parameters of
the digit representation. Such parameters can be the sum of digits, or the number of non-zero
digits. To give precise estimates of the running time of an algorithm, a precise asymptotic
analysis of these parameters of the chosen digit representation is of interest.

For syntactically defined digit representations, these parameters can be computed as the
output sum of finite state machines. In this thesis, the output sum of an arbitrary finite
state machine is analyzed asymptotically. This includes expectation, variance, covariance
and central limit theorem for a sequence defined as the output sum of a finite state machine.
For the moments, not only the main terms are provided, but also the existence of a continuous,
nowhere differentiable, periodic function as the second order term is proved and a formula for
the coefficients of its Fourier series is given.

This setting of sequences which can be defined as the output sum of finite state machines
includes many well-studied sequences, like q-additive functions, digital sequences and the
sum-of-digits function and the Hamming weight of syntactically defined digit representations.
Thus, the results in this work generalize well known facts about the asymptotic behavior of
all these sequences. Also, sequences defined by certain recursions fit into this setting.

The output sum of a finite state machine is in general asymptotically normally distributed.
However, this is not guaranteed: It may happen that the output sum degenerates. In this
work, this case is characterized algebraically and combinatorially. It turns out that this de-
generation only happens in trivial cases and the conditions can be checked easily by inspecting
a representation of the finite state machine as a graph.

These results are applied to asymptotically analyze several sequences in this thesis. This
includes the sequence of carries occurring when performing addition of two numbers given
in a syntactically defined digit representation. Furthermore, the number of iterations of von
Neumann’s addition algorithm is analyzed by using automata. However, this number of
iterations is not asymptotically normally distributed, but converges to a double exponential
distribution.

All the steps to obtain an asymptotic analysis of a given sequence, starting with explicitly
constructing the corresponding finite state machine and stopping finally with the computation
of the Fourier coefficients, can be performed automatically in the mathematical software sys-
tem SageMath. To do this, the new finite state machine package, developed in the framework
of this thesis, is presented. In the meanwhile, this package is included in the mathematical
software system SageMath. This package was developed to conveniently work with automata
and transducers. Thus, all results of this thesis are implemented as methods of this finite
state machine package and the examples are computed by using them accordingly.

Kurzfassung. In der Kryptographie ist Skalarmultiplikation mit großen Zahlen eine häu-
fig verwendete Operation. Diese wird oft unter Verwendung von Ziffernentwicklungen imple-
mentiert. Die Wahl der Ziffernentwicklung beeinflusst die Laufzeit der Skalarmultiplikation.
Deshalb bietet sie eine Möglichkeit, den kryptographischen Algorithmus zu optimieren und
dadurch das Sicherheitsniveau zu erhöhen.

Genauer gesagt wird die Laufzeit der Skalarmultiplikation von der Größe von bestimmten
Parametern der Ziffernentwicklung beeinflusst. Beispiele für solche Parameter sind die Zif-
fernsumme und das Hamminggewicht. Um genaue Angaben zur Laufzeit eines Algorithmus
zu geben, ist eine genaue asymptotische Analyse dieser Parameter notwendig.

Solche Parameter von syntaktisch definierten Ziffernentwicklungen können als Output-
summe von endlichen Zustandsautomaten berechnet werden. In dieser Dissertation werden
solche Outputsummen asymptotisch analysiert. Die Resultate geben Auskunft über den Er-
wartungswert, die Varianz und die Kovarianz von Folgen, welche als Outputsumme von Au-
tomaten definiert sind. Auch zentrale Grenzwertsätze werden bewiesen. Dabei sind bei den
Momenten nicht nur die Hauptterme von Interesse, sondern auch die Terme zweiter Ordnung,
die im Allgemeinen durch stetige, nirgends differenzierbare, periodische Funktionen gegeben
sind. Die Fourierkoeffizienten dieser Funktionen werden ebenfalls bestimmt.

Beispiele für Folgen, welche als Outputsumme von endlichen Automaten definiert werden
können, sind q-additive Funktionen, Block-q-additive Funktionen, sowie Ziffernsumme und
Hamminggewicht von syntaktisch definierten Ziffernentwicklungen. Deshalb verallgemeinern
die Resultate dieser Arbeit viele bekannte Tatsachen über das asymptotische Verhalten die-
ser Folgen. Weiters können spezielle Rekursionen auch von Automaten berechnet und damit
asymptotisch analysiert werden.

Im Allgemeinen ist die Outputsumme eines Automaten asymptotisch normal verteilt.
Allerdings ist das nicht immer der Fall: Es kann auch der Fall eintreten, dass die Outputsumme
eine degenerierte Zufallsvariable ist. Dieser Fall wird in dieser Dissertation algebraisch und
kombinatorisch charakterisiert. Dabei stellt sich heraus, dass die Bedingungen für diesen Fall
anhand der Darstellung des Automaten als Graph einfach überprüft werden können.

Die Resultate dieser Arbeit werden auf mehrere Folgen angewandt, um neue asymptotische
Ergebnisse zu erhalten. Eine dieser Folgen besteht aus den Überträgen, die im Laufe einer
schriftlichen Addition auftreten. Dabei sind beide Summanden in einer syntaktisch definierten
Ziffernentwicklung gegeben. Auch die Anzahl der Iterationen der Von-Neumann-Addition wird
mit Hilfe von Automaten asymptotisch analysiert. Das ist ein Beispiel einer asymptotisch nicht
normal verteilten Folge: Die Anzahl der Iterationen konvergiert zu einer Gumbel-Verteilung.

Die einzelnen Schritte der asymptotischen Analyse können automatisiert werden: Von der
konkreten Konstruktion der Automaten bis zur Berechnung der Fourierkoeffizienten können
die einzelnen Teile im mathematischen Softwaresystem SageMath durchgeführt werden. Dazu
wird in dieser Arbeit das Automatenpaket präsentiert, welches im Rahmen dieser Dissertation
implementiert wurde. Mittlerweile ist dieses Paket ein integraler Bestandteil von SageMath.
Die Idee dieses Pakets ist es, praktische Funktionen zu bieten, um mit Automaten zu arbeiten.
Deshalb sind auch alle Resultate dieser Dissertation Teil dieses Pakets, und illustrierenden
Beispiele wurden mit Hilfe dieses Pakets berechnet.

Eidesstattliche Erklärung.
Ich versichere an Eides statt, dass ich

• die eingereichte wissenschaftliche Arbeit selbstständig verfasst und andere als die
angegebenen Hilfsmittel nicht benutzt habe,
• die während des Arbeitsvorganges von dritter Seite erfahrene Unterstützung, ein-
schließlich signifikanter Betreuungshinweise, vollständig offengelegt habe,
• die Inhalte, die ich aus Werken Dritter oder eigenen Werken wortwörtlich oder sinn-
gemäß übernommen habe, in geeigneter Form gekennzeichnet und den Ursprung der
Information durch möglichst exakte Quellenangaben (z.B. in Fußnoten) ersichtlich
gemacht habe,
• die Arbeit bisher weder im Inland noch im Ausland einer Prüfungsbehörde vorgelegt
habe und
• zur Plagiatskontrolle eine digitale Version der Arbeit eingereicht habe, die mit der
gedruckten Version übereinstimmt.

Ich bin mir bewusst, dass eine tatsachenwidrige Erklärung rechtliche Folgen haben wird.

Ort, Datum Unterschrift

Acknowledgment. While writing this thesis, I was financially supported by the Austrian
Science Fund (FWF): P 24644-N26. This thesis was partially written in the framework of
the Karl Popper Kolleg “Modeling-Simulation-Optimization” funded by the Alpen-Adria-
Universität Klagenfurt and by the Carinthian Economic Promotion Fund (KWF). My research
stays abroad were funded by the Mobilitätsförderung für NachwuchswissenschaftlerInnen of
the Alpen-Adria-Universität Klagenfurt.

I want to thank my advisor Clemens Heuberger for his support and for the time he devoted
to discuss mathematical issues with me. I also want to thank my colleagues at the department
for these nice working conditions. Furthermore, I am grateful to Hsien-Kuei Hwang, Helmut
Prodinger and Stephan Wagner, who gave me the possibilities of research stays abroad.

Finally, I am very grateful to my family and my friends for their support during my
studies. Thank you for listening to me, even in times I was talking a lot about mathematics.

Contents

Chapter 1. Introduction 1

Chapter 2. Output Sum of Transducers: Limiting Distribution and Periodic Fluctuation 7
2.1. Introduction 7
2.2. Results 9
2.3. Asymptotic Distribution—Proof of Theorem 2.1 17
2.4. Fourier Coefficients—Proof of Theorem 2.2 32
2.5. Non-Differentiability—Proof of Theorem 2.3 42
2.6. Recursions—Proof of Theorem 2.4 43

Chapter 3. Variances and Covariances in the Central Limit Theorem for the Output of
a Transducer 51

3.1. Introduction 51
3.2. Preliminaries 52
3.3. Main Results 54
3.4. Examples of Transducers 60
3.5. Proofs of the Theorems 63

Chapter 4. Variance and Covariance of Several Simultaneous Outputs of a Markov
Chain 73

4.1. Introduction 73
4.2. Preliminaries 73
4.3. Main Results 76
4.4. Examples 78
4.5. Proofs 82

Chapter 5. Analysis of Carries in Signed Digit Expansions 89
5.1. Introduction 89
5.2. Digit Expansions 91
5.3. Standard Addition 91
5.4. Approximate Equidistribution 94
5.5. Asymptotic Analysis of the Standard Addition 99
5.6. Von Neumann’s Addition 105
5.7. Asymptotic Analysis of von Neumann’s Addition 106

Chapter 6. Automata and Transducers in the SageMath Mathematical Software
System 115

6.1. Introduction 115
6.2. Three Kinds of Calculating the Non-Adjacent Form as a Warm-Up 117
6.3. An Example: Three-Half–One-Half-Non-Adjacent Forms 122

i

ii CONTENTS

6.4. Selected Technical Details of the Finite State Machines Package 129

Appendix A. Transition Matrices 131

Bibliography 135

List of Figures

1.1 A small example of a transducer. 2
1.2 Transducer to compute the binary sum-of-digits function. 2
1.3 Transducer to compute the Hamming weight of the non-adjacent form. 3

2.1 Transducer to compute the Hamming weight of the non-adjacent form. 9
2.2 Transducer of Remark 2.2.1. 11
2.3 Transducer of Example 2.2.4. 14
2.4 Partial Fourier series compared with the empirical values of the function Ψ1 of

Example 2.2.4. 14
2.5 Transducer computing the abelian complexity function ρ(n) of the paperfolding

sequence. 16
2.6 Partial Fourier series compared with the empirical values of Ψ1(x) of the abelian

complexity function of the paperfolding sequence. 18
2.7 Transducer to compute the q-ary sum-of-digits function. 40

3.1 Subsequential, complete, strongly connected, aperiodic transducer from
Example 3.2.3. 53

3.2 Transducer to compute the Hamming weight of the non-adjacent form. 54
3.3 Transducer of Example 3.3.8. 58
3.4 Functional digraphs of the transducer of Example 3.3.12. 60
3.5 Transducer to compute the Hamming weight of the width-w non-adjacent form. 60
3.6 Transducer to compute the Gray code. 61
3.7 Transducers to compute the number of 01- and 11-blocks in the standard binary

expansion. 62
3.8 Transducer to compute the number of 10-blocks minus the number of 01-blocks in

the standard binary expansion. 62

4.1 Transducer T (w) to compute the Hamming weight of the width-w non-adjacent form. 78
4.2 Transducers to compute the number of 10- and 11-blocks. 80
4.3 Functional digraphs of the transducers of Examples 4.4.2 and 4.4.3. 80
4.4 Transducers to compute the number of 00- and 11-blocks. 81

5.1 Standard addition for two (q, d)-expansions. 95
5.2 Standard addition for two SSDEs. 96

iii

iv LIST OF FIGURES

5.3 Automaton recognizing (q, d)-expansions. 98
5.4 Automaton recognizing SSDEs. 99
5.5 Variances and covariance for (10, d)-expansions of Theorem 5.1. 103
5.6 Variance and covariance for SSDEs for q = 2, . . . , 100 of Theorem 5.2. 104
5.7 Automaton to find the longest carry generating sequence for von Neumann’s addition

of two standard q-ary expansions. 105
5.8 Automaton in [59, Figure 5]: t(x,y) ≤ k + 2 if and only if the automaton traverses

at most k solid edges when reading (sj)j≥0. 107

6.1 Transducer to compute the non-adjacent form. 118
6.2 Transducer T to compute the 3

2–
1
2 -non-adjacent form of n. 125

List of Tables

2.1 First 24 Fourier coefficients of the abelian complexity function ρ(n) of the paperfolding
sequence. 17

5.1 Example for standard addition in the decimal system. 89
5.2 Example for von Neumann’s addition in the decimal system. 90
5.3 Example for standard addition for (5,−1)-expansions. 92
5.4 Example for standard addition for SSDEs for q = 4. 92
5.5 Example for von Neumann’s addition for SSDEs with q = 4. 106

A.1Transition matrix of S(q,d) in Section 5.5.1. 131
A.2Transition matrix of SSSDE for q ≥ 8 in Section 5.5.2. 132
A.3Exit weights of NSSDE in Section 5.7. 132
A.4Transition matrix R for the solid transitions in NSSDE for q ≥ 6 in Section 5.7. 133
A.5Transition matrix B for the dotted transitions in NSSDE for q ≥ 6 in Section 5.7. 134

v

CHAPTER 1

Introduction

Over the last decades, asymptotic properties of digital sequences have been studied by
many authors. The simplest example is the q-ary sum of digits, see Delange [20]. This has been
generalized to various other number systems (cf. [9, 29, 35, 36, 40, 50, 57, 69, 71, 99]). Similar
results have been obtained for other digital sequences (cf. [10, 15]). Frequently observed
phenomena in the asymptotic analysis of these sequences include periodic fluctuations in the
second order term and asymptotic normality (see also [25]).

To illustrate the type of results we prove in this thesis, we recall the corresponding results
for the sum-of-digits function. These results were obtained step by step in many different
papers (cf. [18]).

Theorem 1.1 ([18–21, 67, 70]). Let N be a fixed integer The expected value of the q-ary
sum-of-digits function sq for a equidistributed integer in the interval [0, N) is

E(sq(n)) = 1
N

∑
0≤n<N

sq(n) = q − 1
2 logqN + Ψ1(logqN),

with a periodic, continuous, nowhere differentiable function Ψ1.
The variance of the q-ary sum-of-digits function is

V(sq(n)) = 1
N

∑
0≤n<N

sq(n)2 − E(sq(n))2

= q2 − 1
12 logqN −Ψ2

1(logqN) + Ψ2(logqN)

with a periodic, continuous function Ψ2.
The q-ary sum-of-digits function is asymptotically normally distributed. In particular, we

have

P
(
sq(n)− q−1

2 logqN√
q2−1

12 logqN
< x

)
= 1√

2π

∫ x

−∞
exp

(
−1

2y
2
)
dy +O(log−

1
2 N)

for all x ∈ R.
The Fourier coefficients of the Fourier expansion

∑
k∈Z ck exp(2πikx) of the periodic func-

tion Ψ1 are given by

c0 = q − 1
2 log q (log(2π)− 1)− q + 1

4 ,

ck = − q − 1
2πik
log q

(
1 + 2πik

log q
)

log q
ζ
(2πik

log q
)

for k 6= 0

where ζ denotes the Riemann ζ-function.
1

2 1. INTRODUCTION

1 | 0

0 | 1
0 | 11 | 1

Figure 1.1. A small example of a transducer.

0 | 0, 1 | 1

Figure 1.2. Transducer to compute the binary sum-of-digits function.

The purpose of this thesis is to use finite state machines as a uniform framework to derive
such asymptotic results. The results mentioned above will follow as corollaries from our main
results. We also analyze new sequences, like the number of carries occurring in the addition
of two digit expansions.

Our main focus lies on transducers: These finite state machines transform input words to
output words using a finite memory. A transducer is defined to consist of a finite set of states,
an initial state, a set of final states, an input alphabet, an output alphabet and a finite set of
transitions, where a transition starts in one state, leads to another state and has an input and
an output label from the corresponding alphabet. Depending on the purpose in the different
chapters, this definition will be refined. Especially, an automaton is a transducer with no
output labels. An example of a transducer is given in Figure 1.1. We label the transitions
with “input label | output label”. The initial state is marked by an ingoing arrow starting at
no other state and the final states are marked by outgoing arrows leading to no other state.

The input of the transducer is a random word. In some cases, we also use the digit
expansion of a random integer as the input. The probability model of the input sequence
varies in the different chapters. Depending on whether we are only interested in the main
terms or also in the periodic fluctuation in the second order term, we choose one of the
following two probability models:

• All digit expansions of integers less than a fixed number N are equally likely (see
Chapter 2).
• All digit expansions or sequences of a fixed length ` are equally likely (see Chapters 3–
6). In Chapters 3 and 6, the single digits of the digit expansions are independent.
In Chapters 4 and 5, they are no longer independent in general.

We asymptotically analyze the output sum of a transducer, that is the sum of the sequence
of output labels of the transducer for a given input sequence. For example, the transducer
in Figure 1.2 computes the binary sum-of-digits function. The results in Theorem 1.1 follow
from our asymptotic analysis of the output sum of this transducer.

In Figure 1.3, there is a further example of a transducer. Its output sum is the Hamming
weight of the non-adjacent form. The non-adjacent form [89] is a digit expansion with base 2,
digits −1, 0 and 1, and the syntactical rule that at least one of any two adjacent digits is non-
zero. The non-adjacent form uniquely exists for all integers. For example, the non-adjacent
form of 27 is (1001̄01̄)2 where 1̄ = −1.

1. INTRODUCTION 3

0 0 1

1 | 1 1 | 0
0 | 0

0 | 1

1 | 0

0 | 0

Figure 1.3. Transducer to compute the Hamming weight of the non-adjacent
form.

Several notions abstracting the sum-of-digits and related problems have been studied.
One of them is the notion of completely q-additive functions a : N0 → R with

a(qn+ λ) = a(n) + a(λ)
for 0 ≤ λ < q and q ≥ 2 (cf. [10]). These have been generalized to digital sequences as defined
in [1, 15]: A sequence a(n) is a digital sequence if it can be represented as a sum

∑
w f(w)

where f is a given function and w runs over all windows of a fixed length κ of the q-ary digit
representation of n. These digital sequences can easily be formulated by transducers.

Similarly to the previously mentioned results for the sum-of-digits function, we obtain
the following asymptotic results for the output sum of a transducer in Chapter 2: The main
term, the periodic fluctuation and an error term of the expected value and the variance of this
sequence are established. The periodic fluctuation of the expected value is Hölder continuous
and, in many cases, nowhere differentiable. A general formula for the Fourier coefficients of
this periodic function is derived. Furthermore, it turns out that the sequence is asymptotically
normally distributed for many transducers.

By definition, a finite state machine deterministically transforms an input sequence into
an output sequence. Thus the output depends deterministically on the input. However,
choosing a random input sequence, the dependence between the two random variables sum
of the input sequence and sum of the output sequence may become negligible for long input
sequences. Also if we consider two different outputs of a transducer, the two different output
sums may become independent for long input sequences. We investigate for which transducers
this is the case. The dependency is given by the covariance between the input and output sum
(or between the two output sums): If the covariance goes to infinity, then the two random
variables are asymptotically dependent.

There are many results on the variance of the sum of the output of explicit transducers
under the same probability model as we use. See, for example, [6,36,38,42] for the variance of
the Hamming weight of different digit expansions which are computed by transducers. In [60],
the authors count the occurrences of a digit and give the expected value, the variance and
the covariance between two different digits. The occurrence of a specific pattern in a word
is investigated in e.g. [11, 31, 34, 80] (with generalizations to other probability models, too).
In [11], the covariance between different patterns is also considered. In [40], Grabner and
Thuswaldner consider a transducer whose output is the sum of digit function. However, they
were only interested in the output and did not consider the joint distribution or the covariance
of the input and output sum.

By contrast, we are interested in the joint distribution of the input and the output sum
(or, more generally, of two different output sums) for a general transducer. We not only alge-
braically compute the expected value and the variance-covariance matrix of this distribution,
but we also give combinatorial descriptions of these values. In particular, we combinatorially

4 1. INTRODUCTION

characterize independent transducers in Chapters 3 and 4. This combinatorial connection is
described by a condition on some weighted number of functional digraphs or on each cycle of
the underlying graph of the transducer. To obtain these results, we apply a generalization of
the Matrix-Tree Theorem by Chaiken [16] and Moon [75].

In many contexts, an unbounded variance (as in [66]) is necessary to prove a Gaussian limit
law. In Chapters 3 and 4, we combinatorially describe transducers whose output sums have
bounded variance. For strongly connected transducers, we prove that this is the case if and
only if there exists a constant such that for each cycle, the output sum is proportional to its
length with this proportionality constant. This is in turn equivalent to a quasi-deterministic
output sum in the sense that the difference of the output sum and its expected value is
bounded for all events, independently of the length of the input. In the special case where
the transducer is strongly connected and aperiodic and the only possible outputs are 0 and
1, it turns out that the output sum has asymptotically bounded variance if and only if the
output is constant for all transitions. This result is also extended to the joint distribution of
two or more different output sums of one transducer.

As an application of the previous results, we analyze addition. Addition is an essential
arithmetic operation in many algorithms. As the efficiency of addition is influenced by the
number of occurring carries, we asymptotically analyze this number, which depends on the
base and the digit set of the digit expansion.

We consider two different types of digit expansions: (q, d)-expansions and symmetric
signed digit expansions [58], and two different types of addition: standard addition and von
Neumann’s addition [101].

Diaconis and Fulman [22] and Nakano and Sadahiro [79] consider the carries of the stan-
dard addition as a Markov chain. This is only valid if the digits of the digit expansion
are independent. In their analysis, they obtain a stationary distribution. In Chapter 5, we
determine the expectation and the variance of the number of positive and negative carries
as well as the covariance between the positive and negative carries in the (q, d)-system and
the symmetric signed digit system. Furthermore, we prove a central limit theorem for these
numbers. The authors of [22] concentrate on an odd basis q and the symmetric digit set
{−(q− 1)/2, . . . , (q− 1)/2}. The symmetric signed digit expansion (defined later) is the nat-
ural way to define a unique representation with a symmetric set of digits and an even base q.
Thus, a part of the present thesis can be seen as a complement of [22].

The expected number of iterations of von Neumann’s addition was analyzed in [72] and [59]
for standard q-ary expansions and (q, d)-expansions, respectively. It turns out that the ex-
pected number of iterations is logarithmic in the length of the expansions. In [59], symmetric
signed digit expansions are analyzed, too, but with a simplified probabilistic model since a
precise probabilistic model exceeded computing resources available at that time. This sim-
plification has a significant influence on the main term. In this thesis, we combine advances
in soft- and hardware with sophisticated use of the finite state machine package of Sage-
Math [96] to tackle the precise model in roughly 10 minutes of CPU time. The results include
expectation, variance and convergence to a double exponential distribution.

In the sequel, we discuss the relation of our setting of sequences defined by automata and
our results with the notion of q-regular sequences introduced in [1].

A sequence is q-regular if it is the first coordinate of a vector v(n) such that there exist
matrices V0, . . . , Vq−1 with

(1.1) v(qn+ ε) = Vεv(n)

1. INTRODUCTION 5

for ε ∈ {0, 1, . . . , q − 1}.
While the output sum is a q-regular sequence for any transducer (see Remark 2.3.10), the

converse is not necessarily true: Obviously, the sum of the output of a transducer reading the
input n is always bounded by O(logn). However, the 2-regular sequence1

a(n) =
{
n if n is a power of 2,
0 otherwise

can clearly not be bounded by O(logn).
Thus, the concept of q-regular sequences is more general than our setting, but a broader

variety of asymptotic behavior is observed which precludes any generalization of our results
to general q-regular sequences.

Asymptotic estimates for q-regular sequences are given by Dumas [26,27]. By restricting
our attention to sequences defined by transducers, we obtain an asymptotic estimate of the
variance, explicit expressions for the Fourier coefficients of the fluctuation in the second term
of the expected value, non-differentiability of this fluctuation as well as a central limit theorem.

All chapters comprise computational aspects: First of all, we build a new transducer
out of small known transducers by combining them accordingly such that the output sum
of this transducer is the sequence we want to analyze. Then we compute certain values of
this transducer to obtain the constants of the expected value, the variance and the Fourier
coefficients of the periodic fluctuation. These computations involve determinants of matrices
in several variables and partial sums of conditionally convergent series. These computations
are implemented in the mathematical software system SageMath [97] using the finite state
machine package described in the tutorial in Chapter 6 and [49]. This package is an integral
part of SageMath, which allows reproducibility of our results. The code and its documentation
are peer reviewed such that both meet the high quality standards of SageMath (see e.g. [48]).

1Use v(0) = (0, 1)> (where > denotes transposition), V0 =
(

2 0
0 1

)
and V1 =

(
0 1
0 0

)
.

CHAPTER 2

Output Sum of Transducers: Limiting Distribution and
Periodic Fluctuation

We asymptotically analyze the output sum of a transducer. The input of the transducer is
a random integer in the interval [0, N) (or a higher dimensional analogue). Sequences defined
by a certain class of recursions can be written in this framework.

Depending on properties of the transducer, the main term, the periodic fluctuation and
an error term of the expected value and the variance of this sequence are established. The
periodic fluctuation of the expected value is Hölder continuous and, in many cases, nowhere
differentiable. A general formula for the Fourier coefficients of this periodic function is derived.
Furthermore, it turns out that the sequence is asymptotically normally distributed for many
transducers.

The construction of the transducers, the computations for the constants of the expecta-
tion, the variance and the Fourier coefficients can be done algorithmically by the mathematical
software system SageMath [97]: The general framework and the code for the computation of
the Fourier coefficients is included in SageMath 6.7 using its finite state machine package
described in Chapter 6. The code for the construction from a recursion is submitted for
inclusion in future versions of SageMath, see Ticket #17221.

This chapter corresponds to [55], which appeared in the Electronic Journal of Combina-
torics. An extended abstract with less general Theorems 2.1, 2.2 and 2.4 and without proofs
appeared as [52] in the proceedings of the 25th International Conference on Probabilistic,
Combinatorial and Asymptotic Methods for the Analysis of Algorithm. This is joint work
with Clemens Heuberger and Helmut Prodinger.

2.1. Introduction

For a transducer T , let T (n) be the sum of the output labels of T when reading the q-ary
expansion of n. For a positive integer N , we study the behavior of T (n) for a uniformly chosen
random n in {0, . . . , N−1}. Assuming suitable connectivity properties of the underlying graph
of the transducer, we obtain the following results.

• The expected value is given by

E(T (n)) = eT logqN + Ψ1(logqN) + o(1)

for a constant eT and a periodic, continuous function Ψ1 (Theorem 2.1).
• The variance is

V(T (n)) = vT logqN −Ψ2
1(logqN) + Ψ2(logqN) + o(1)

with constant vT and a periodic, continuous function Ψ2(x) (Theorem 2.1).
• After suitable renormalization, T (n) is asymptotically normally distributed (Theo-
rem 2.1).

7

http://trac.sagemath.org/17221

8 2. OUTPUT SUM OF TRANSDUCERS

• The Fourier coefficients of Ψ1 are explicitly given in Theorem 2.2 and the Fourier
series converges absolutely and uniformly.
• The function Ψ1 is nowhere differentiable provided that eT is not an integer (Theo-
rem 2.3).

The exact assumptions for the various results are given in detail in the respective theorems.
Results for higher dimensional input are available for expectation, variance, normal distribu-
tion and Fourier coefficients.

Our theorems are generalizations of the following known results.
• For the sum of digits of the standard q-ary digit representations (cf. [20]), we
obtain an asymptotic normal distribution, the Fourier coefficients and the non-
differentiability (for even1 q). The error term vanishes, as stated in Remark 2.3.4.
Therefore, the formula is not only asymptotic but also exact. The formulas for the
Fourier coefficients by Delange [20] also follow from our Theorem 2.2.
• The occurrence of subblocks in standard and non-standard digit representations is
defined by a strongly connected, aperiodic transducer. Thus, we obtain the expected
value, the variance, the limit law and the Fourier coefficients (cf. [35, 69, 71] for the
expected value). For one dimensional digit representations, we also obtain the non-
differentiability (assuming eT 6= 0, 1) of the fluctuation in the expectation.
• The Hamming weight is a special case of the occurrence of subblocks. Thus, Theo-
rem 2.1 is a generalization of the results about the width-w non-adjacent form [50],
the simple joint sparse form [36] and the asymmetric joint sparse form [50].
• A transducer defining a completely q-additive function consists of only one state.
Therefore, we obtain an asymptotic normal distribution (as in [10]), the Fourier
coefficients and the non-differentiability (assuming eT 6∈ Z and integer output). Here,
the error term vanishes, too.
• A digital sequence is defined by a strongly connected, aperiodic transducer. Thus,
digital sequences are asymptotically normally distributed or degenerate. Assuming
eT 6∈ Z and integer output, the periodic fluctuation Ψ1(x) is non-differentiable. The
Fourier coefficients can be computed by Theorem 2.2. See also [15] for results on the
expected value.
• Automatic sequences [1] are also defined by transducers: The output labels of all
transitions are 0 and the final output labels are as in the definition of such sequences.
Theorem 2.1 gives the expected value with eT = 0 (see also [84]) and, depending
on the transducer, also the variance with vT = 0. The Fourier coefficients of the
periodic fluctuation of the expected value are given explicitly in Theorem 2.2.
• In [40], Grabner and Thuswaldner investigate the sum of digits function for negative
bases s−q(n). They give a transducer to compute the function s−q(n) − s−q(−n).
Their result about the limit law follows directly from our Theorem 2.1.

While some of the examples can easily be formulated by transducers, other examples are
more readily expressed in terms of recursions of the shape
(2.1) a(qκn+ λ) = a(qκλn+ rλ) + tλ for 0 ≤ λ < qκ

with fixed κ, κλ, rλ ∈ Z, tλ ∈ R and κλ < κ. We transform such a recursion into a transducer
in Theorem 2.4 in Section 2.2.6.

1Our approach in Theorem 2.3 requires that the constant eT of the main term of the expected value is
not an integer. In this case, eT = q−1

2 , which is an integer if q is odd.

2.2. RESULTS 9

0 1 1

1 | 0 1 | 1
0 | 0

0 | 0

1 | 0

0 | 1

Figure 2.1. Transducer to compute the Hamming weight of the non-adjacent
form.

As an example of a new result obtained by Theorem 2.1, we give an asymptotic estimate
of the abelian complexity function of the paperfolding sequence in Example 2.2.8. In [74],
the authors prove that this sequence satisfies a recursion of type (2.1). As consequences of
Theorem 2.1, the expected value is ∼ 8

13 log2N , the variance is ∼ 432
2197 log2N and the sequence

is asymptotically normally distributed.
Section 2.2 contains all the theorems and the required notions. In Section 2.2.2, Theo-

rem 2.1, formulas for the first and second moment of the output sum of a transducer and
its limiting distribution are presented. In Theorem 2.2 in Section 2.2.4, the Fourier coef-
ficients of the periodic fluctuation Ψ1(x) of the expected value are stated. We discuss the
non-differentiability of Ψ1(x) in Theorem 2.3 in Section 2.2.5.

Section 2.2.6 deals with sequences satisfying the recursion (2.1) and higher dimensional
analogues. We construct a transducer computing this sequence in Theorem 2.4. Thus, from
Theorem 2.1, the expected value, the variance and the limit distribution follow in many cases.

In Sections 2.3 to 2.6, we give the proofs of all the theorems from Section 2.2.

2.2. Results

This section starts with the definition of some notions about the connectivity of a trans-
ducer. Then we will state the theorems about the moments and the limiting distribution, the
Fourier coefficients, the non-differentiability, and the construction of a transducer computing
a sequence given by a recursion as in (2.1).

2.2.1. Notions. We consider complete, deterministic and subsequential transducers (cf.
[12, Chapter 1]). In our case, the input alphabet is {0, . . . , q − 1}d for a positive integer d
and the output alphabet R. A transducer is said to be deterministic and complete if for every
state and every digit of the input alphabet, there is exactly one transition starting in this
state with this input label. A subsequential transducer T (cf. [91]) is defined to be a finite
deterministic automaton with one initial state, an output label for every transition and a final
output label for every state.

Figure 2.1 presents an example of a complete, deterministic, subsequential transducer.
The label of a transition with input ε and output δ is written as ε | δ.

The input of the transducer is the standard q-ary joint digit representation of an integer
vector n ∈ Nd0, i.e. the standard q-ary digit representation at each coordinate of the vector n.
The input is read from right (least significant digit) to left (most significant digit), without
leading zeros. Then the output of the transducer is the sequence of the outputs of the
transitions along the unique path starting in the initial state with the given input and the
final output of the last state of this path. The element T (n) of the sequence defined by the
transducer T is the sum of this output sequence.

10 2. OUTPUT SUM OF TRANSDUCERS

Using final output labels is convenient for our purposes. Clearly, it would also be possible
to model the final output labels by using an “end-of-input” marker and additional transitions.
In the context of digital expansions, the behavior can usually also be obtained by reading a
sufficient number of leading zeros. But the approach using final outputs is more general as
it is not required that the final outputs are compatible with the output generated by leading
zeros.

For the various results, different properties of the complete, deterministic, subsequential
transducer and its underlying digraph are needed. All states of the underlying digraph are
assumed to be accessible from the initial state. Contracting each strongly connected com-
ponent of the underlying digraph gives an acyclic digraph, the so-called condensation. A
strongly connected component is said to be final strongly connected if it corresponds to a leaf
(i.e., a vertex with out-degree 0) in the condensation. Let c be the number of final strongly
connected components. We call a transducer or a digraph finally connected if c = 1.

For the asymptotic expressions, only the final strongly connected components are impor-
tant. All other strongly connected components only influence the error term. Thus, we are
not interested in the periodicity of the whole underlying digraph, but in the periodicity of
the final strongly connected components. The period of a digraph is defined as the greatest
common divisor of all lengths of directed cycles of the digraph. For j = 1, . . . , c, let pj be the
period of the final strongly connected component Cj . Define the final period of the digraph
as

p = lcm{pj | j = 1, . . . , c}.
We call a digraph finally aperiodic if p = 1. If the underlying digraph is strongly connected,
its final period is equal to its period.

For proving the non-differentiability of the fluctuation, we not only need a finally aperiodic,
finally connected digraph (p = c = 1), but also a reset sequence. A reset sequence is an input
sequence such that starting at any state and reading this sequence leads to a specific state
s. If the transducer is not finally aperiodic and finally connected, then there cannot exist a
reset sequence.

2.2.2. Moments and Limiting Distribution. This section contains the theorem about
the moments of the output sum T (n) and the limiting distribution. Further results about
the periodic fluctuation can be found in Theorems 2.2 and 2.3. The proof follows the ideas
in [36], also used and extended in [50].

As probability space, we use ΩN = {0, 1, . . . , N − 1}d endowed with the equidistribution
measure.

Denote by Φµ,σ2 the cumulative distribution function of the normal distribution with
mean µ and variance σ2 6= 0. Thus,

Φµ,σ2(x) = 1
σ
√

2π

∫ x

−∞
exp

(
−1

2
(y − µ

σ

)2)
dy.

Theorem 2.1. Let d ≥ 1, T be a complete, deterministic, subsequential transducer with input
alphabet {0, 1, . . . , q − 1}d, output alphabet R, final period p, and c final components.

Then T (n) has the expected value

(2.2) E(T (n)) = eT logqN + Ψ1(logqN) +O(N−ξ logN)

where the constants eT and ξ > 0 are given in (2.4) in Section 2.2.3 and Ψ1(x) is a p-periodic,
Hölder continuous function.

2.2. RESULTS 11

1 0

0 | 1, 1 | −1
0 | 0, 1 | 0

Figure 2.2. Transducer of Remark 2.2.1.

If all bj given in (2.4) are positive, the distribution function of T (n) can be approximated
by a mixture of c Gaussian distributions with weights λj, means aj logqN and variances
bj logqN for some constants aj and λj > 0 with

∑c
j=1 λj = 1, given in (2.4). In particular,

P
(T (n)√

logqN
≤ x

)
=

c∑
j=1

λjΦaj
√

logq N,bj
(x) +O

(
log−

1
2 N

)
for all x ∈ R.

If all aj are equal, then T (n) has the variance

(2.3) V(T (n)) = vT logqN −Ψ2
1(logqN) + Ψ2(logqN) +O(N−ξ log2N)

with constant vT ∈ R (given in (2.4)) and a p-periodic, continuous function Ψ2(x). Otherwise,
the variance is V(T (n)) = Θ(log2N).

If all aj are equal, T (n) converges in distribution to a mixture of Gaussian (or degenerate)
distributions with means 0 and variances bj, weighted by λj. In particular, if all bj > 0,

P
(T (n)− E(T (n))√

logqN
≤ x

)
=

c∑
j=1

λjΦ0,bj (x) +O
(
log−

1
2 N

)
holds for all x ∈ R.

If furthermore c = 1 and vT 6= 0, then T (n) is asymptotically normally distributed.

We give the proof of this theorem in Section 2.3.

Remark 2.2.1. The assumption that bj > 0 is essential for obtaining uniform convergence of
the distribution function and the speed of convergence in particular. To see this, consider the
transducer in Figure 2.2. It is easily seen that T (n) = (−1)n. For even N , the distribution
function of T (n)/

√
log2N is given by

P
(T (n)√

log2N
≤ x

)
=


0 if x < −1/

√
log2N,

1/2 if − 1/
√

log2N ≤ x < 1/
√

log2N,

1 if 1/
√

log2N ≤ x,

which does not converge uniformly.

2.2.3. Eigenvalues and Eigenvectors of the Transition Matrix. For the constants
in Theorem 2.1 and the Fourier coefficients in Theorem 2.2, we need the notion of a transition
matrix of the transducer and properties of its eigenvalues and eigenvectors.

We label the states of the transducer with contiguous positive integers starting with 1.
We denote the indicator vector of the initial state by e1.

12 2. OUTPUT SUM OF TRANSDUCERS

Definition 2.2.2. Let t ∈ R be in a neighborhood of 0.
The transition matrix Mε for ε ∈ {0, . . . , q − 1}d is the matrix whose (s1, s2)-th entry is

eitδ if there is a transition from state s1 to state s2 with input label ε and output label δ, and
0 otherwise.

Let M be the sum of all these transition matrices.
Lemma 2.2.3. There are differentiable functions µj(t) in a neighborhood of t = 0 for j = 1,
. . . , c such that the dominant eigenvalues of M are µj(t) exp(2πil

p) in this neighborhood of
t = 0 for some of the l ∈ P = {k ∈ Z | −p/2 < k ≤ p/2}. For each of these dominant
eigenvalues, the algebraic and geometric multiplicities coincide. For t = 0, µj(0) = qd.

The proof of this lemma is given in Section 2.3.
Let l ∈ Z. Consider the (not necessarily orthogonal) projection onto the direct sum of the

left eigenspaces of M corresponding to the eigenvalues µj(t) exp(2πil
p) for j = 1, . . . , c such

that the kernel is the direct sum of the remaining generalized left eigenspaces. Let w>l (t)
be the image of e>1 under this projection, where > denotes transposition. The definition of
w>l (t) only depends on l modulo p.

We write w>l for w>l (0) and w′>l for the derivative of w>l (t) at t = 0. Furthermore, w>l is
either the null vector or a left eigenvector of M corresponding to the eigenvalue qd exp(2πil

p).
Let Cj be a final component with corresponding indicator vector cj . Define the constants

λj = w>0 cj .

In Section 2.3.1, we will show that λj > 0 and
∑c
j=1 λj = 1.

With these definitions, the constants in Theorem 2.1 can be expressed as

(2.4)

aj = −iq−dµ′j(0),

eT =
c∑
j=1

λjaj ,

bj =
µ′j(0)2 − qdµ′′j (0)

q2d ,

vT =
c∑
j=1

λjbj .

Finally, ξ > 0 is chosen such that all non-dominant eigenvalues of M have modulus strictly
less than qd−ξ at t = 0.

These constants can be interpreted as follows: aj logqN and bj logqN are the main terms
of the mean and the variance, respectively, of the output sum of the final component Cj .
These expressions including the derivatives of the eigenvalues correspond to the formulas
for mean and variance given in [30, Theorem IX.9]. The constants eT and vT are convex
combinations of the corresponding constants of the final components Cj .

The positive weight λj in these convex combinations turns out to be the asymptotic prob-
ability of reaching the final component Cj . This is connected to the following interpretation
of the left eigenvector w>0 : If the final period p is 1, the entries of w>0 will be shown to be the
asymptotic probabilities of reaching the corresponding states. This corresponds to the left
eigenvector used in a steady-state analysis. If p > 1, these probabilities depend on the length
of the input modulo p. Then, we will prove that w>0 gives the average of these probabilities
taken over all residues modulo p. These interpretations are justified in Section 2.3.1.

2.2. RESULTS 13

2.2.4. Fourier Coefficients. This section contains the formulas for the Fourier coeffi-
cients of the periodic fluctuation Ψ1(x). For this purpose, we need the following definitions.

Let χk = 2πik
p log q for k ∈ Z and 1 be a vector whose entries are all one.

The s-th coordinate of the vector b(n) is the sum of the output of the transducer T
(including the final output) if starting in state s with input the q-ary joint expansion of n.
In particular, the first coordinate of b(n) is T (n), and b(0) is the vector of final outputs.
Furthermore, define the vector-valued function H(z) by the Dirichlet series

(2.5) H(z) =
∑
n≥0
n6=0

b(n)‖n‖−z∞ ,

where the inequality in the summation index is considered coordinate-wise and ‖ · ‖∞ is the
maximum norm.
Theorem 2.2. Let T be a subsequential, complete, deterministic transducer. Then the
Fourier coefficients of the p-periodic fluctuation Ψ1(x) are

(2.6)
c0 = − eT

d log q − iw
′>
0 1 + 1

d
Resz=dw>0 H(z),

ck = 1
d+ χk

Resz=d+χk w
>
kH(z)

for k 6= 0.
The Fourier series

∑
k∈Z ck exp(2πik

p x) converges absolutely and uniformly.
The function w>kH(z) is meromorphic in <z > d − 1. It has a possible double pole at

z = d for k = 0 and possible simple poles at z = d+ χk for k 6= 0.
The proof of this theorem is in Section 2.4.
The infinite recursion given in Lemma 2.4.5 can be used to numerically evaluate the

Dirichlet series H(z) with arbitrary precision and to compute its residues at z = d+ χl (see
Lemma 2.4.7 and [39]). For d = 1, the computation of the Fourier coefficients can be done
by the mathematical software system SageMath [97].
Example 2.2.4. The (artificial) transducer in Figure 2.3 has two final components with
periods 2 and 3, respectively. Thus the final period is 6 and the function Ψ1(x) is 6-periodic.
The constant eT of the expected value is 11

8 . In Figure 2.4, the partial Fourier series with
2550 Fourier coefficients2 is compared with the empirical values of the periodic fluctuation
Ψ1, i.e.,

(2.7) 1
N

∑
n<N

T (n)− 11
8 log2N

with integers N and 4 ≤ log2N ≤ 16.
The computation of these 2550 Fourier coefficients took less than 6 minutes using a

standard dual-core PC.
In Example 2.2.8 we compute the first 2550 Fourier coefficients of the abelian complexity

function of the paperfolding sequence.
As a corollary of Theorem 2.2, we obtain the following result which was already proved

by Delange [20].
2We use 2550 Fourier coefficients in this plot because the period length of the next summand of the Fourier

series in Figure 2.4 is already less than the resolution of a standard printer.

14 2. OUTPUT SUM OF TRANSDUCERS

1
| 1, 0

| 31
| 1
, 0
| 1

1 | 1, 0 | 2 1 | 1
0 | 1

0
|1

,1
|0

0
|2

,1
|2

Figure 2.3. Transducer of Example 2.2.4: All states are final with final output 0.

−2.50

−2.25

−2.00

4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.4. Partial Fourier series compared with the empirical values of the
function Ψ1 of Example 2.2.4.

Corollary 2.2.5. The Fourier coefficients of the periodic fluctuation

Ψ1(logqN) = 1
N

∑
n<N

sq(n)− q − 1
2 logqN

for the q-ary sum-of-digits function sq(n) are

(2.8)
c0 = q − 1

2 log q (log(2π)− 1)− q + 1
4 ,

ck = − q − 1
χk(1 + χk) log q ζ(χk)

for k 6= 0 and χk = 2πik
log q where ζ denotes the Riemann ζ-function.

We prove this corollary in Section 2.4.

2.2.5. Non-differentiability. In this section, we prove that for certain transducers, the
periodic fluctuation Ψ1(x) of the expected value is nowhere differentiable.

Theorem 2.3. Let d = 1. Assume that eT 6∈ Z and that the transducer T has a reset sequence
and output alphabet Z. Then the function Ψ1(x) is non-differentiable for any x ∈ R.

The proof can be found in Section 2.5. There, we follow the method presented by Tenen-
baum [98], see also Grabner and Thuswaldner [40].

2.2. RESULTS 15

In [40, 98], the reset sequence consists only of 0’s. If working with digit expansions, it is
often possible to choose such a reset sequence. However, in the context of recursions, this is
not always possible, see Example 2.2.8. There the reset sequence is (00001).

For a general finally aperiodic, finally connected transducer, the existence of a reset se-
quence cannot be guaranteed.

2.2.6. Recursions. In this section, we describe how to reduce a recursion to a transducer
computing the given sequence. All inequalities in this section are considered coordinate-wise.

Let q ≥ 2, κ, κλ ∈ Z, rλ ∈ Zd, tλ ∈ R and 0 ≤ κλ < κ for 0 ≤ λ < qκ1. If d ≥ 2, then
additionally let rλ ≥ 0 for all λ.

Consider the sequence a(n), n ∈ Nd0, defined by the recursion
(2.9) a(qκn+ λ) = a(qκλn+ rλ) + tλ for 0 ≤ λ < qκ1
and for all integer vectors n such that the arguments on both sides are non-negative. Fur-
thermore, initial values a(n) for n ∈ I have to be given for a suitable finite set I ⊂ Nd0.

It must be ensured that the recursion (2.9) does not lead to conflicts and that the set of
I is appropriate. Additionally, we require that I is minimal (with respect to inclusion). In
that case, we say that the recursion is well-posed.

In Section 2.6, we construct a subsequential, complete, deterministic transducer T (also
when the recursion is not well-posed) reading the q-ary joint expansion of integer vectors
without leading zeros. We will define a distinguished subset of its states, called simple states.
Furthermore, disjoint classes F1, . . . , FK of integer vectors will be defined.

Theorem 2.4. The recursion (2.9) is well-posed if and only if
(1) for each cycle consisting of simple states with transitions with zero input label, the

sum of its output transitions vanishes and
(2) the set I consists of one representative of each Fj, 1 ≤ j ≤ K.

In that case, the sum of the output of T is the sequence a, i.e., T (n) = a(n) for all n ≥ 0.

The proof of this theorem is in Section 2.6. Combining this result with Theorem 2.1 yields
an asymptotic analysis of the sequence a(n), as in Example 2.2.8. Moreover, this asymptotic
analysis can be performed algorithmically in SageMath for d = 1 (using the code submitted
at http://trac.sagemath.org/17221). A combinatorial description of the sets Fi involving
an auxiliary transducer is given in Remark 2.6.1.

Remark 2.2.6. For d ≥ 2, and rλ 6≥ 0, the sequence cannot be computed by a finite
transducer: For every j ≥ 0, there are non-zero integer vectors n ≥ 0, n′ ≥ 0 with n ≡ n′
(mod qj)—i.e., a finite deterministic transducer cannot distinguish between n and n′—such
that the recursion (2.9) can be applied for the argument qκn + λ but cannot be applied for
qκn′ + λ.

This problem does not arise in the case of dimension d = 1: if the end of the input is not
yet reached (this is something the transducer knows), there is a guaranteed forthcoming digit
≥ 1 (instead of 6= 0 in the higher dimensional case). This information is enough to decide
whether the recursion can be used.

Remark 2.2.7. Suppose that the given sequence is defined for n ≥ n0 for some constant
n0. Then the sequence b(n) = a(n + n0) fulfills (2.9) with κλ, rλ and tλ replaced by κµ,
qκµs + rµ − n0 and tµ, respectively, where n0 + λ = qκs + µ for 0 ≤ µ < qκ1. Then
Theorem 2.4 can be applied.

http://trac.sagemath.org/17221

16 2. OUTPUT SUM OF TRANSDUCERS

0 | 0 1 | 0

0 | 0 1 |
0

0
| 0 1

| 0
0 | 0

1 | 0

0 | 0 1 |
0

0
| 0

1
| 0

1 | 2

0 | 0

0
|0

1 | 0

0
| 0

1
| 0

0 | 1

1 | 1

0
| 01

| 0

0 |
2

1
| 2

0
| 0

1 | 0

0 | 0

1 | 0
1
| 2

0
| 2

0 | 1

1 | 1

0
| 2

1 | 1

0
| 0

1 | 0

Figure 2.5. Transducer to compute the abelian complexity function ρ(n) of
the paperfolding sequence. For simplicity, the final output labels are omitted.

Example 2.2.8 ([85]). Consider the abelian complexity function ρ(n) of the paperfolding
sequence. The paperfolding sequence is obtained by repeatedly folding a strip of paper in half
in the same direction. Then we open the strip and encode a right turn by 1 and a left turn
by 0. The abelian complexity function ρ(n) gives the number of abelian equivalence classes of
subwords of length n of the paperfolding sequence. Two subwords of length n are equivalent
if they are permutations of each other. In [74], the authors prove that this sequence satisfies
the recursion

ρ(4n) = ρ(2n),
ρ(4n+ 2) = ρ(2n+ 1) + 1,
ρ(16n+ 1) = ρ(8n+ 1),
ρ(16n+ 3) = ρ(2n+ 1) + 2,
ρ(16n+ 5) = ρ(4n+ 1) + 2,
ρ(16n+ 7) = ρ(2n+ 1) + 2,
ρ(16n+ 9) = ρ(2n+ 1) + 2,
ρ(16n+ 11) = ρ(4n+ 3) + 2,

2.3. ASYMPTOTIC DISTRIBUTION—PROOF OF THEOREM 2.1 17

l cl l cl
0 1.5308151288 12 −0.0002297481 + 0.0009687657 i
1 −0.0162585750 + 0.0478637218 i 13 0.0006425378 + 0.0006516706 i
2 0.0054521982 + 0.0075023586 i 14 0.0000413217− 0.0003867709 i
3 −0.0028294724 + 0.0086495903 i 15 −0.0005632948− 0.0001843541 i
4 0.0036818110 + 0.0021908312 i 16 0.0009051717− 0.0000476354 i
5 −0.0028244495 + 0.0014519078 i 17 −0.0004621780− 0.0000594551 i
6 −0.0008962222 + 0.0030512180 i 18 −0.0000127264− 0.0003100798 i
7 0.0015033904 + 0.0013217107 i 19 0.0004112716 + 0.0001954204 i
8 −0.0006766166− 0.0015392566 i 20 −0.0000011706 + 0.0004183253 i
9 0.0016074870− 0.0000503663 i 21 −0.0001027596 + 0.0004091624 i
10 −0.0006908394 + 0.0018753575 i 22 −0.0004725451 + 0.0004237489 i
11 −0.0008974336 + 0.0007658455 i 23 −0.0000596181 + 0.0002323317 i

Table 2.1. First 24 Fourier coefficients of the abelian complexity function
ρ(n) of the paperfolding sequence.

ρ(16n+ 13) = ρ(2n+ 1) + 2,
ρ(16n+ 15) = ρ(2n+ 2) + 1

with ρ(1) = 2 and ρ(0) = 0. The constructed transducer is shown in Figure 2.5. For simplicity,
we do not state the final output labels in this figure. The expected value and the variance are

E(ρ(n)) = 8
13 log2N + Ψ1(log2N) +O(N−ξ logN),

V(ρ(n)) = 432
2197 log2N −Ψ2

1(log2N) + Ψ2(log2N) +O(N−ξ log2N)

with 0 < ξ < 0.5604267891, as the second largest eigenvalues of the transition matrix are
−0.7718445063 ± 1.1151425080 i. The sequence ρ(n) is asymptotically normally distributed.
The functions Ψ1(x) and Ψ2(x) are 1-periodic and continuous. The reset sequence of the
transducer is (00001) (reading from right to left). The function Ψ1(x) is nowhere differentiable
and its Fourier series converges absolutely and uniformly. The first 24 Fourier coefficients of
Ψ1(x) are listed in Table 2.1. In Figure 2.6, the trigonometric polynomial formed with the
first 2550 Fourier coefficients is compared with the empirical values of the function Ψ1(x)
(see (2.7)).

2.3. Asymptotic Distribution—Proof of Theorem 2.1

This section contains some lemmas which will together imply Theorem 2.1. Our plan
is as follows: First, we give auxiliary lemmas about the eigenvalues and eigenvectors of the
transition matrix M in Section 2.3.1. Section 2.3.2 contains an asymptotic formula for the
characteristic function of the random variable T (n). We use this characteristic function to
give formulas for the expected value and the variance in Section 2.3.3, and prove the continuity
of the periodic fluctuations in Section 2.3.4. Finally, we prove the central limit theorem in
Section 2.3.5.

We use the notation (εL . . . ε0)q for the standard q-ary joint digit representation of an
integer vector with εL 6= 0. For a real number in the interval [0, q), we write (ε0.ε1 . . .)q

18 2. OUTPUT SUM OF TRANSDUCERS

1.5

1.6

10 11 12

Figure 2.6. Partial Fourier series compared with the empirical values of
Ψ1(x) of the abelian complexity function of the paperfolding sequence.

for the q-ary digit representation choosing the representation ending on 0ω in the case of
ambiguity. Furthermore, we use Iverson’s notation [41]: [expression] is 1 if expression is true
and 0 otherwise. All O-constants depend only on q, d and the number of states.

2.3.1. Transition Matrix and its Eigenvectors. This section contains the proofs of
some results on the eigenvalues, eigenvectors and eigenprojections of the transition matrix
M .

For the proof of Theorem 2.1, we use the following lemma which describes the eigenvalues
of a matrix in a similar way as the Perron–Frobenius theorem (cf. [33]).

Lemma 2.3.1. Let M be a matrix with complex entries whose underlying directed graph is p-
periodic and strongly connected. Then the set of non-zero eigenvalues of M can be partitioned
into disjoint sets of cardinality p where each set is invariant under multiplication by e2πi/p

and all eigenvalues in one set have the same algebraic multiplicities.

Proof. Since the underlying directed graph of M ∈ Cn×n is a strongly connected, p-
periodic graph, we can write M as

M =



0 A2 0 · · · 0
... . . . A3

.
... 0

0 . . . Ap
A1 0 · · · · · · 0


with block matrices Ai by reordering the vertices. ThenM−xI is the product of the matrices

−xI 0 · · · · · · 0

0
...
0 · · · 0 −xI 0
A1

1
x

∏2
j=1Aj · · · 1

xp−2
∏p−1
j=1 Aj

1
xp−1

∏p
j=1Aj − xI



2.3. ASYMPTOTIC DISTRIBUTION—PROOF OF THEOREM 2.1 19

and 

I − 1
xA2 0 · · · 0

0
... 0
... . . . I − 1

xAp
0 · · · · · · 0 I


.

Let h(x) be the characteristic polynomial of
∏p
j=1Aj ∈ Cm×m. Thus the characteristic

polynomial of M is xn−m−(p−1)mh(xp). Therefore, the eigenvalues of M are either 0 or any
p-th root of a non-zero eigenvalue of

∏p
j=1Aj . �

With this lemma, we can prove Lemma 2.2.3 about the eigenvalues of the matrix M :

Proof of Lemma 2.2.3. First, consider the case t = 0. By construction, qd is an eigen-
value with right eigenvector 1 of M . As ‖M‖∞ ≤ qd, where ‖ · ‖∞ denotes the row sum
norm, qd is a dominant eigenvalue.

Consider the strongly connected components of the underlying graph of T . Each fi-
nal strongly connected component Cj induces a final transducer Tj which is strongly con-
nected, complete, deterministic and pj-periodic. Thus, the adjacency matrix at t = 0 of
this final transducer has a dominant eigenvalue qd with right eigenvector 1. By the Perron–
Frobenius theorem (cf. [33, Theorem 8.8.1]), all dominant eigenvalues of this final transducer
are {qde2πil/p | l ∈ P with p | lpj}, each with algebraic and geometric multiplicity one.

A non-final strongly connected component induces a transducer S with the adjacency
matrix S. This transducer is not complete. Let S+ be the complete transducer where loops
are added to states of S where necessary. The adjacency matrix of S+ is S+. Since S+

is complete, deterministic and strongly connected, ρ(S+) = qd. As S ≤ S+ but S 6= S+,
Theorem 8.8.1 in [33] implies ρ(S) < ρ(S+) = qd.

Thus, the dominant eigenvalues are qde2πil/p with an l ∈ P such that there exists a
j ∈ {1, . . . , c} with p | lpj . We determine the geometric multiplicities of these dominant
eigenvalues of M in Lemma 2.3.2.

Now, fix a final strongly connected component Cj and some l ∈ P with p | lpj . In a small
neighborhood of t = 0, let µlj(t) be the eigenvalue of the submatrix ofM corresponding to the
complete transducer Tj with µlj(0) = qde2πil/p. Because of Lemma 2.3.1 applied to the final
component Cj separately, we have µlj(t) = e2πil/pµj(t) where µj(t) is defined to be µ0j(t).

All other moduli of eigenvalues of M are less than minl,j |µlj(t)| because of the continuity
of eigenvalues.

We prove the differentiability of the eigenvalues in Lemma 2.3.2. �

Lemma 2.3.2. Let µj(t) exp(2πil
p) be a dominant eigenvalue of the matrix M . There exists

a corresponding left eigenvector of M with zero entries except in coordinates corresponding to
the final component Cj.

At t = 0, the algebraic and geometric multiplicities of qd exp(2πil
p) coincide.

Furthermore the eigenvalues and the eigenprojection corresponding to the eigenvalues
µj exp(2πil

p) are analytic at t = 0.

Proof. Let qd exp(2πil
p) be a dominant eigenvalue of M . Its algebraic multiplicity at

t = 0 is |{j : p | lpj}|. We construct exactly one left eigenvector in the neighborhood of

20 2. OUTPUT SUM OF TRANSDUCERS

t = 0 for each final component Cj with p | lpj : Let Tj be the induced transducer of the final
component Cj . Let ṽ>(t) be a left eigenvector of the adjacency matrix of Tj corresponding to
the eigenvalue µj(t) exp(2πil

p). As the algebraic multiplicity is 1 in this final component, the
choice of ṽ>(t) is unique up to multiplication with a scalar function in t. Then, we construct
the left eigenvector v>(t) by padding ṽ>(t) with zeros.

These left eigenvectors are linearly independent because of the block structure induced
by the final components. Thus the geometric and the algebraic multiplicities of qd exp(2πil

p)
coincide.

Furthermore, µj(t) exp(2πil
p) is a simple eigenvalue of the adjacency matrix of Tj . There-

fore, [68, Chapter II] implies the differentiability of the eigenvalues and eigenprojections. �

From now on we use the convention that the eigenspace corresponding to µj(t) exp(2πil
p) is

the null space if µj(t) exp(2πil
p) is not an eigenvalue. Then its eigenprojection is the constant

null function.

Definition 2.3.3. Let w>lj (t) be the eigenprojection of e>1 onto the left eigenspace corre-
sponding to the possible eigenvalue µj(t) exp(2πil

p). The vector w>lj (t) is thus a null vector or
a left eigenvector of M corresponding to the eigenvalue µj(t) exp(2πil

p).
Define

w>(t) = e>1 −
∑
l∈P

c∑
j=1
w>lj (t).

As an abbreviation, we write w>lj , w>, w′>lj and w′> for these projections and their
derivatives at t = 0.

Remark 2.3.4. If there are only dominant eigenvalues, then w>(t) = 0. This will imply that
there is no error term in the asymptotic expansion of the expected value and the variance.
This occurs in the case of the sum of digits of the standard q-ary digit representation and
other completely q-additive functions because the transducer has only one state.

Lemma 2.3.5. In a fixed neighborhood of t = 0, let ξ > 0 be as defined in (2.4), i.e., all
non-dominant eigenvalues have modulus less than qd−ξ. Then∥∥∥ dk

dtk
w>(t)Mm

∥∥∥ = O(c(1)
k q(d−ξ)(m−k)mk)

for m, k ≥ 0 and a constant c(1)
k .

Proof. Let P be the matrix such that x> 7→ x>P is the sum of the eigenprojections
onto the left eigenspaces corresponding to µj exp(2πil

p) for j = 1, . . . , c and l ∈ P. Then
w> = e>1 (I − P) and

w>Mm = e>1 ((I − P)M)m.
As the spectral radius of (I − P)M is less than qd−ξ, we obtain the stated estimates. �

With w>l defined in Section 2.2.3, we have

(2.10) w>l (t) =
c∑
j=1
w>lj (t).

2.3. ASYMPTOTIC DISTRIBUTION—PROOF OF THEOREM 2.1 21

Note that left and right eigenvectors corresponding to different eigenvalues annihilate each
other. Because of the block structure of the eigenvectors in Lemma 2.3.2 and because 1 is a
right eigenvector to qd, we have

(2.11) [l = 0]λj = w>lj1

where λj is defined in Section 2.2.3. Furthermore, w>1 = 0 and
c∑
j=1

λj =
∑
l∈P

c∑
j=1
w>lj1 +w>1 = e>1 1 = 1.

Denote by δ the vector whose s-th component is the sum of the outputs of all transitions
leaving the state s. By the definition of the transition matrix M(t), δ can be expressed as

(2.12) iδ = d

dt
M(t)1

∣∣∣∣
t=0

.

We now establish a relation between δ, the left eigenvector w>l and its derivative at t = 0.
By definition of the left eigenvectors w>lj (t) and (2.10),

w>l (t)M1 =
c∑
j=1

µj(t) exp
(2πil
p

)
w>lj (t)1.

Differentiation, (2.11), (2.4) and (2.10) yield

(2.13) w>l δ = [l = 0]eT qd − qd
(
e

2πil
p − 1

)
iw′>l 1.

To establish the interpretation of w>0 given at the end of Section 2.2.3, we consider

ŵ>k := lim
m→∞

e>1 M
mp+kq−d(mp+k),

the stationary distribution on the state space of all states of the transducer under the as-
sumption that the input length is congruent to k modulo p. Using (2.10) and Lemma 2.3.5
yields

ŵ>k = lim
m→∞

(∑
l∈P

w>l +w>
)
Mmp+kq−d(mp+k)

= lim
m→∞

∑
l∈P

exp
(2πilk

p

)
w>l +O(q−ξ(mp+k))

=
∑
l∈P

exp
(2πilk

p

)
w>l .

Summation leads to 1
p

∑p−1
k=0 ŵ

>
k = w>0 . Thus, λj is the hitting probability of the final

component Cj when starting in the initial state. As every state is accessible from the initial
state, λj is positive.

Finally, for l = 0, (2.13) reads q−dw>0 δ = eT , which can be interpreted as the steady state
analysis of the expectation: the probability distribution w>0 is multiplied with the expected
output q−dδ.

22 2. OUTPUT SUM OF TRANSDUCERS

2.3.2. Characteristic Function. To obtain a central limit law in Section 2.3.5, we
compute an asymptotic formula for the characteristic function in this section.

The next lemma can be proved by induction on L. It is a generalization of Lemma 3
in [50].

Lemma 2.3.6. Let Aε, ε = 0, . . . , q − 1 be matrices in Cn×n, Hε : N0 → Cn×n be known
functions with H0(0) = 0. Let G : N0 → Cn×n be a function which satisfies the recurrence
relation

G(qN + ε) = AεG(N) +Hε(N)
for N ≥ 0, ε ∈ {0, . . . , q − 1} and G(0) = 0. Then

G ((εL . . . ε0)q) =
L∑
l=0

(l−1∏
i=0

Aεi

)
Hεl ((εL . . . εl+1)q) .

The solution of this recursion finally leads to an asymptotic formula for the characteristic
function.

We choose the branch −π + π
p < arg z ≤ π + π

p of the complex logarithm. After setting
t = 0, we use only the logarithm of complex numbers for which our branch coincides the
principal branch −π < arg z ≤ π.

Lemma 2.3.7. The characteristic function of the random variable T (n) is

E(exp(itT (n))) = 1
Nd

∑
l∈P

c∑
j=1

µj(t)logq N exp
(2πil logqN

p

)
Ψlj(logqN, t) +R(N, t)

with functions Ψlj(x, t) (defined in (2.23)), which are arbitrarily often differentiable in t and
1-periodic in x, and an error term R(N, t). This error term R(N, t) is arbitrarily often
differentiable, too, and satisfies dk

dtk
R(N, t) = O(c(2)

k N−ξ logkN), for k ≥ 0, a constant c(2)
k

and the constant ξ > 0 defined in Section 2.2.3, in a neighborhood of t = 0. At t = 0, we have
R(N, 0) = 0.

Proof. For a transducer T , consider the characteristic function

(2.14) F (N) = E(exp(itT (n))) = 1
Nd

∑
n∈ΩN

eitT (n)

of the discrete random variable T (n).
Then the summands in (2.14) can be expressed as a matrix product

eitT (n) = e>1

L∏
l=0

Mεlu

where (εL . . . ε0)q is the standard q-ary joint digit representation of n with εL 6= 0 and the
vector u has entries eitb(s) where b(s) is the final output of the state s. Again, the vector e1
is the indicator vector of the initial state.

Let

g(n) =
L∏
l=0

Mεl

and
G(N) =

∑
n∈ΩN

g(n),

2.3. ASYMPTOTIC DISTRIBUTION—PROOF OF THEOREM 2.1 23

hence

(2.15) F (N) = 1
Nd
e>1 G(N)u.

The function g(n) satisfies the recursion

(2.16) g(qn+ ε) = Mεg(n)

for ε ∈ {0, 1, . . . , q − 1}d, n ≥ 0 with qn+ ε 6= 0.
We define further functions

(2.17) GC(N) =
∑

0≤ni<N
i 6∈C

∑
ni=N
i∈C

g(n)

where the coordinates n1, . . . , nd of n with indices in the set C ⊆ {1, . . . , d} are fixed to N .
This yields G(N) = G∅(N). Furthermore, we define the matrices

(2.18) M ε
C,D =

q−1∑
βi=0
i 6∈C∪D

ε−1∑
βi=0
i∈D

∑
βi=ε
i∈C

Mβ

for disjoint sets C, D ⊆ {1, . . . , d} and ε ∈ {0, 1, . . . , q− 1}. In this definition, we restrict the
i-th coordinate βi of β to be ε or less than ε if i ∈ C or i ∈ D, respectively. Otherwise, the
i-th coordinate can be arbitrary. Then, M = M ε

∅,∅ holds independently of ε.
Then, (2.16) yields the following recursions for GC(N), ε = 0, . . . , q − 1, N ≥ 0 and

C 6= {1, . . . , d}:

(2.19)

GC(qN + ε) =
q−1∑
βi=0
i 6∈C

∑
βi=ε
i∈C

∑
0≤qmi+βi<qN+ε

i 6∈C

∑
qmi+βi=qN+ε

i∈C

g(qm+ β)

= [C = ∅ ∧ qN + ε 6= 0](I −M0)

+
q−1∑
βi=0
i 6∈C

∑
βi=ε
i∈C

Mβ

∑
0≤mi<N+ ε−βi

q

i 6∈C

∑
mi=N
i∈C

g(m)

= [C = ∅ ∧ qN + ε 6= 0](I −M0) +
∑
D⊆Cc

M ε
C,DGC∪D(N).

This recursion for GC only depends on GC′ for C ′) C. As

G{1,...,d}(N) = g(N1),

we can recursively determine GC using Lemma 2.3.6. In particular, for G(N), this yields the
recursion formula

(2.20) G(qN + ε) = MG(N) +Hε(N)

for N ≥ 0, ε ∈ {0, . . . q − 1} where Hε are known functions with

(2.21) Hε(N) = [qN + ε 6= 0](I −M0) +
∑

∅6=D⊆{1,...,d}
M ε
∅,DGD(N).

24 2. OUTPUT SUM OF TRANSDUCERS

Thus by Lemma 2.3.6, we get

(2.22) G((εL . . . ε0)q) =
L∑

m=0
MmHεm ((εL . . . εm+1)q) .

By construction, ‖Mε‖∞ = 1 for every ε ∈ {0, . . . , q−1}d. We conclude that ‖M ε
C,D‖∞ ≤

qd−|C|−|D|ε|D|. By the definition of GC(N), the growth rates of the functions GC(N) and
Hε(N) are ‖GC(N)‖∞ = O(Nd−|C|) and ‖Hε(N)‖∞ = O(Nd−1), respectively. For k ≥ 0, the
k-th derivative of Hε(N) at t = 0 can be bounded by O(c(3)

k Nd−1 logkN) for a constant c(3)
k .

We define

R(N, t) = 1
Nd

L∑
m=0

w>MmHεm((εL . . . εm+1)q)u,

which constitutes an explicit expression for the error term contributed by the non-dominant
eigenvalues. By Lemma 2.3.5, its derivatives satisfy

dk

dtk
R(N, t) = O(c(2)

k N−ξ logkN)

for k ≥ 0. Because u(0) = 1 and left and right eigenvectors corresponding to different
eigenvalues annihilate each other, we have R(N, 0) = 0.

By (2.15), (2.22) and e>1 =
∑
l∈P

∑c
j=1w

>
lj +w>,

F (N) = 1
Nd

∑
l∈P

c∑
j=1

µLj exp
(2πilL

p

)

×
L∑

m=0
µm−Lj exp

(2πil(m− L)
p

)
w>ljHεm((εL . . . εm+1)q)u

+R(N, t)

= 1
Nd

∑
l∈P

c∑
j=1

µ
logq N
j exp

(2πil logqN
p

)
Ψlj(logqN, t) +R(N, t)

with
(2.23)

Ψlj(x, t) = µj(t)−{x} exp
(
− 2πil{x}

p

) ∞∑
m=0

µj(t)−m exp
(
− 2πilm

p

)
w>ljHxm((x0 . . . xm−1)q)u

and q{x} = (x0.x1 . . .)q, choosing the representation ending on 0ω in the case of ambiguity.
The functions Ψlj(x, t) are periodic in x with period 1 and well defined for all x ∈ R since

they are dominated by geometric series. Furthermore, they are arbitrarily often differentiable
in t. �

2.3.3. Moments. In this section we give the moments of the output sum T (n).

Lemma 2.3.8. The expected value and the variance of T (n) are as stated in Theorem 2.1
with constants given in (2.4) and periodic functions given in Lemma 2.3.9 and (2.27).

2.3. ASYMPTOTIC DISTRIBUTION—PROOF OF THEOREM 2.1 25

Proof. The derivative of E(exp(itT (n))) with respect to t at t = 0 gives the expected
value of the sum of the output of the transducer

E(T (n)) = 1
Nd

∑
n∈ΩN

T (n) = Ψ0(logqN) logqN + Ψ1(logqN) +O(N−ξ logN)

with p-periodic functions

(2.24)

Ψ0(x) =
∑
l∈P

c∑
j=1

aje
2πilx
p Ψlj(x, 0),

Ψ1(x) = −i
∑
l∈P

c∑
j=1

e
2πilx
p Ψ′lj(x, 0)

and constants aj defined in (2.4). Here, Ψ′lj denotes the derivative with respect to t.
We now compute Ψ0(x) for some x with q{x} = (x0.x1 . . .)q. To compute Hε(N), we use

(2.20) and the definition of G(N) to obtain

(2.25) Hε(N)1 = ((qN + ε)d − (qN)d)1
for t = 0, because 1 is a right eigenvector of Mε for every ε. Together with (2.23), this results
in

Ψlj(x, 0) = q−d{x} exp
(
− 2πil{x}

p

)
w>lj1D

(
qde

2πil
p

)
with

D(z) =
∞∑
m=0

z−m((x0 . . . xm)dq − (x0 . . . xm−10)dq).

By (2.11), we have Ψlj(x, 0) = 0 for l 6= 0.
To compute D(qd), observe that

D(qd) =
∞∑
m=0

(
(x0.x1 . . . xm)dq − (x0.x1 . . . xm−1)dq

)
= lim

m→∞
(x0.x1 . . . xm)dq = qd{x}

because D(qd) is a telescoping sum.
We conclude that

(2.26) Ψlj(x, 0) = λj [l = 0]
and therefore

Ψ0(x) =
c∑
j=1

ajλj = eT

by (2.4). This completes the proof of the expectation as given in (2.2).
Using Lemma 2.3.7 and (2.26), the second derivative of E(exp(itT (n))) gives

1
Nd

∑
n∈ΩN

T (n)2 = log2
q N

c∑
j=1

a2
jλj + vT logqN

− 2i logqN
∑
l∈P

c∑
j=1

aj exp
(2πil logqN

p

)
Ψ′lj(logqN, 0)

+ Ψ2(logqN) +O(N−ξ log2N)

26 2. OUTPUT SUM OF TRANSDUCERS

with vT given in (2.4) and

(2.27) Ψ2(x) = −
∑
l∈P

c∑
j=1

e
2πilx
p Ψ′′lj(x, 0).

Here, Ψ′′lj denotes the second derivative with respect to t. Thus, by (2.2), the variance is

(2.28)

V(T (n)) = 1
Nd

∑
n∈ΩN

T (n)2 −
(1
Nd

∑
n∈ΩN

T (n)
)2

=
(c∑
j=1

a2
jλj − e2

T

)
log2

q N

+
(
vT − 2i

∑
l∈P

c∑
j=1

aj exp
(2πil logqN

p

)
Ψ′lj(logqN, 0)

− 2eT Ψ1(logqN)
)

logqN

+ Ψ2(logqN)−Ψ2
1(logqN) +O(N−ξ log2N).

By Jensen’s inequality, the coefficient of log2
q N is zero if and only if all aj are equal.

If all aj are equal, then the coefficient of logqN in (2.28) simplifies by (2.24), too, and we
obtain (2.3). �

For the computation of the Fourier coefficients and the proof of the Hölder condition, we
need an explicit expression for Ψ1.

In analogy to the definition of GC in (2.17), define

(2.29) BC(N) =
∑

0≤ni<N
i 6∈C

∑
ni=N
i∈C

b(n)

for C ⊆ {1, . . . , d}.

Lemma 2.3.9. For q{x} = (x0.x1 . . .)q, the fluctuation Ψ1(x) can be expressed as

(2.30) Ψ1(x) = −eT {x} − q−d{x}
∑
l∈P

∞∑
m=0

q−dme
2πil
p

(bxc−m)
fl((x0 . . . xm)q)

with

(2.31)

fl(r) = [l = 0]eT
(
blogq rc(rd − (qbrq−1c)d) + (qbrq−1c)d

)
+ iw′>l 1

(
rd − exp

(2πil
p

)
(qbrq−1c)d

)
−w>l B∅(r) + qd exp

(2πil
p

)
w>l B∅(brq−1c).

The estimate fl(r) = O(rd−1 log r) holds.

Proof. From (2.24), (2.23), (2.4), (2.26) and (2.11) and the absolute convergence of Ψlj ,
we obtain (2.30) with

fl(r) = [l = 0]eT blogq rc(rd − (qbrq−1c)d) + i
d

dt
w>l (t)Hr mod q(brq−1c)u(t)

∣∣∣∣
t=0

.

2.3. ASYMPTOTIC DISTRIBUTION—PROOF OF THEOREM 2.1 27

From the combinatorial interpretation of b(n) and g(n)u(t), we obtain

(2.32) ib(n) = d

dt
g(n)u(t)

∣∣∣∣
t=0

,

in analogy to (2.12). As the range of summation of GC and BC coincides, we immediately
get

(2.33) iBC(N) = d

dt
GC(N)u(t)

∣∣∣∣
t=0

.

By (2.25) and by differentiating Hε(N)u(t) using (2.20), (2.33) and (2.12),

fl(r) = [l = 0]eT blogq rc(rd − (qbrq−1c)d) + iw′>l 1
(
rd − (qbrq−1c)d

)
−w>l

(
B∅(r)−MB∅(brq−1c)− brq−1cdδ

)
.

The fact that w>l is a left eigenvector of M and (2.13) establish (2.31).
For the growth estimate of fl(r), we use the explicit definition of Hε in (2.21), (2.33) and

the trivial estimate ‖b(n)‖ = O(log ‖n‖). �

To formulate T (n) as a q-regular sequence, we first define output vectors. The s-th entry
of the vector δε is the output label of the transition from state s with input label ε. By (2.16),
(2.32), and

(2.34) d

dt
Mε1

∣∣∣
t=0

= iδε,

we have
(2.35) b(qn+ ε) = Mεb(n) + δε.
Remark 2.3.10. We can use the matrices

Vε =

Mε δε [ε = 0]I
0 1 0
0 0 [ε = 0]I


and v(n) = (b(n), 1, [n = 0](b(0) − M0b(0) − δ0))> in the definition of a q-regular se-
quence (1.1) to realize that the output sum of a transducer is q-regular. If d > 1, then
this is a multidimensional q-regular sequence (cf. [1]).

2.3.4. Hölder Continuity. In this section, we prove the continuity of the fluctuations
Ψ1 and Ψ2 as well as the Hölder continuity of Ψ1. This will be used to establish the conver-
gence of the Fourier series. The following lemma is an extension of the result in [50].
Lemma 2.3.11. The functions Ψ1(x) and, if all aj are equal, Ψ2(x) are continuous for x ∈ R.

Proof. First note that continuity of Ψ1 for x ∈ R with x = logq y where y has no finite
q-ary expansion follows from the definitions (2.23) and (2.24). To prove it for x = logq y
with 0 ≤ x < p where y has a finite q-ary expansion, observe that the two one-sided limits
exist due to the definition. Next, we prove that they are the same. Consider the two integer
sequences Nk = yqpk and Ñk = Nk − 1 for k large enough such that Nk is an integer. For a
real number z, we write {z}p = p{z/p} for the unique real number in the interval [0, p) such
that z − {z}p is an integer multiple of p.

This yields
lim
k→∞
{logqNk}p = lim

k→∞
{logq y + pk}p = {x}p = lim

z→x+
{z}p,

28 2. OUTPUT SUM OF TRANSDUCERS

lim
k→∞
{logq Ñk}p = lim

k→∞
{logqNk + logq(1−N−1

k)}p

= lim
k→∞
{x+ logq(1−N−1

k)}p = lim
z→x−

{z}p.

If we insert the two sequences Nk and Ñk in∑
n∈ΩN

T (n) = eTN
d logqN +NdΨ1(logqN) +O(Nd−ξ logN)

(cf. (2.2)) and take the difference, we get

O(Nd−1
k logNk) = Nd

kΨ1(logqNk)− Ñd
kΨ1(logq Ñk) +O(Nd−ξ

k logNk).
Because Ψ1(x) is bounded by a geometric series by definition, we have

Ψ1(logqNk)−Ψ1(logq Ñk) = O(N−ξk logNk)
and in particular

lim
k→∞

Ψ1({logqNk}p) = lim
k→∞

Ψ1({logq Ñk}p).

Therefore, Ψ1 is continuous in x.
The continuity of Ψ2(x) at x = logq(y) for y with infinite q-ary expansion again follows

from the definition of Ψ2. If all aj are equal, the continuity of the fluctuation −Ψ2
1 + Ψ2 of

the variance (2.3) follows as above, where logNk has to be replaced by log2Nk in the error
terms. Thus Ψ2 is also continuous in this case. �

Lemma 2.3.12 ([46]). The function Ψ1 satisfies a Hölder condition of order α for all α ∈
(0, 1).

Proof. Let 0 < α < 1 be any constant. We want to prove that there exists a positive
constant C such that
(2.36) |Ψ1(y)−Ψ1(x)| ≤ C|y − x|α

holds for all x, y ∈ R.
For x = y, the left-hand side of (2.36) is 0 and the inequality is obviously satisfied. From

now on, assume that x < y. By the periodicity of Ψ1, it is sufficient to prove (2.36) for
0 ≤ x < p.

First, we prove (2.36) for the case 0 ≤ x < y and sufficiently small y − x < 1.
Fix such x and y and choose the integer k such that

q−k−1 ≤ |qy − qx| < q−k.

Note that the continuous differentiability of z 7→ qz on the compact interval [0, p + 1]
implies that qy − qx = O(|y − x|) and therefore
(2.37) q−k = O(|y − x|).

We prove (2.36) in three steps.

Statement 2.3.13. Let a, b ∈ R with x ≤ a < b ≤ y and bac = bbc such that the first k + 1
digits of the expansions

q{a} = (a0.a1 . . .)q, q{b} = (b0.b1 . . .)q
coincide, i.e., ai = bi for 0 ≤ i ≤ k. Then

|Ψ1(b)−Ψ1(a)|= O(|y − x|α).

2.3. ASYMPTOTIC DISTRIBUTION—PROOF OF THEOREM 2.1 29

Proof. Lemma 2.3.9 yields
|Ψ1(b)−Ψ1(a)| ≤ |eT ||{b} − {a}|

+ q−d{b}
∑
l∈P

∑
m≥0

q−dm|fl((b0 . . . bm)q)− fl((a0 . . . am)q)|

+ |q−d{b} − q−d{a}|
∑
l∈P

∑
m≥0

q−dm|fl((a0 . . . am)q)|

≤ |eT ||{b} − {a}|

+
∑
l∈P

∑
m>k

q−dm(|fl((b0 . . . bm)q)|+ |fl((a0 . . . am)q)|)

+ |q−d{b} − q−d{a}|
∑
l∈P

∑
m≥0

q−dm|fl((a0 . . . am)q)|

because the summands for m ≤ k cancel in the first sum as the first k+ 1 digits coincide. By
using the estimates

|{b} − {a}| ≤ |{b} − {a}|α = |b− a|α,

|q−d{b} − q−d{a}| = O(|b− a|α),

|fl((b0 . . . bm)q)| = O(q(d−1)mm)
(see Lemma 2.3.9 for the last estimate), we obtain

|Ψ1(b)−Ψ1(a)| = O
(
|b− a|α +

∑
m>k

mq−m + |b− a|α
)

= O(|b− a|α + kq−k) = O(|b− a|α + q−αk)
= O(|b− a|α + |y − x|α) = O(|y − x|α).

Here, (2.37) has been used in the penultimate step. �

We now use the continuity of Ψ1 and Statement 2.3.13 to remove the condition on coin-
ciding digits from Statement 2.3.13.
Statement 2.3.14. Let a, b ∈ R with x ≤ a < b ≤ y and bac = bbc. Then

|Ψ1(b)−Ψ1(a)|= O(|y − x|α).

Proof. We write the expansions of q{a} and q{b} as
q{a} = (a0.a1 . . .)q, q{b} = (b0.b1 . . .)q.

This yields
0 < q{b} − q{a} = 1

qbac
(qb − qa) ≤ qb − qa ≤ qy − qx < q−k.

Thus
0 ≤ (b0 . . . bk)q − (a0 . . . ak)q ≤ 1.

If (b0 . . . bk)q = (a0 . . . ak)q, the result follows immediately from Statement 2.3.13. Otherwise,
we have
(2.38) (b0 . . . bk)q = (a0 . . . ak)q + 1.
For m ≥ 0, define z and zm by bzc = bzmc = bac = bbc and

q{z} = (b0.b1 . . . bk)q,

30 2. OUTPUT SUM OF TRANSDUCERS

q{zm} = (a0.a1 . . . ak(q − 1)m)q.
Then limm→∞ zm = z because of (2.38).

By construction of z and zm, we have a < zm < z ≤ b for sufficiently large m.
By continuity of Ψ1,

(2.39) |Ψ1(z)−Ψ1(zm)| ≤ |y − x|α

holds for sufficiently large m.
This yields

|Ψ1(b)−Ψ1(a)| ≤ |Ψ1(b)−Ψ1(z)|+ |Ψ1(z)−Ψ1(zm)|+ |Ψ1(zm)−Ψ1(a)|.
The third summand can be bounded by Statement 2.3.13 (for a and zm) and the second by
(2.39). The first summand is either 0 or can be bounded by Statement 2.3.13 (for z and
b). �

To finally prove (2.36) for sufficiently small y − x < 1, we only have to remove the
assumption bac = bbc from Statement 2.3.14. We use the idea of the proof of Statement 2.3.14
once more.

Assume that byc > bxc. By our assumption y < x + 1, this amounts to byc = bxc + 1.
For m ≥ 0, define z and zm by z = byc, bzmc = bxc and q{zm} = ((q − 1).(q − 1)m)q. Then
limm→∞ zm = z. By continuity of Ψ1, we have
(2.40) |Ψ1(z)−Ψ1(zm)| ≤ |y − x|α

and x < zm < z ≤ y for sufficiently large m.
Then, this yields

|Ψ1(y)−Ψ1(x)| ≤ |Ψ1(y)−Ψ1(z)|+ |Ψ1(z)−Ψ1(zm)|+ |Ψ1(zm)−Ψ1(x)|.
The third summand can be bounded by Statement 2.3.14 for x and zm and the second by
(2.40). The first vanishes or can be bounded by Statement 2.3.14 for z and y.

This yields
|Ψ1(y)−Ψ1(x)| = O(|y − x|α).

Therefore, (2.36) is satisfied with a suitable positive constant C for y− x < ε for some ε > 0.
Assume y − x ≥ ε. As Ψ1 is continuous and periodic, |Ψ1(y)−Ψ1(x)| is bounded. Thus,

(2.36) holds for a suitable positive constant C for |y − x| ≥ ε.
Therefore, the function Ψ1 is Hölder continuous of order α < 1. �

2.3.5. Limiting Distribution. Finally, we can prove the parts of Theorem 2.1 concern-
ing the approximation of the distribution function and the central limit theorem.

Proof. To prove that the distribution function can be approximated by a Gaussian
mixture, we use the Berry-Esseen inequality (cf., for instance, [30, Theorem IX.5]) to estimate
the difference between distribution functions. The proof follows the proof of Hwang’s Quasi-
Power Theorem [66]. First, we describe the two corresponding characteristic functions.

Let ĝN (t) be the characteristic function of a mixture of Gaussian or degenerate distribu-
tions with weights λj , means aj

√
logqN and variances bj for j = 1, . . . , c, that is

ĝN (t) =
c∑
j=1

λj exp
(
iaj
√

logqNt−
bj
2 t

2
)

with aj , bj and λj defined in (2.4).

2.3. ASYMPTOTIC DISTRIBUTION—PROOF OF THEOREM 2.1 31

By Lemma 2.3.7, the characteristic function f̂N (t) of T (n)/
√

logqN is

f̂N (t) =
c∑
j=1

exp
(
iaj
√

logqNt−
bj
2 t

2 +O
(t3√

logN

))
×
∑
l∈P

e
2πil
p

logq NΨlj

(
logqN,

t√
logqN

)
+R

(
N,

t√
logN

)

for t log−
1
2

q N in a fixed neighborhood of 0.
Because of (2.26) and R(N, 0) = 0 (see Lemma 2.3.7), we have

f̂N (t) =
c∑
j=1

exp
(
iaj
√

logqNt−
bj
2 t

2
)

exp
(
O
(t3√

logN

))
×
(
λj +O

(t√
logN

))
+O

(
N−ξt

√
logN

)
.

Now we use the inequality |ew − 1| ≤ |w|e|w|, valid for all complex numbers w, to obtain
(2.41)∣∣∣1
t
(f̂N (t)− ĝN (t))

∣∣∣ =
c∑
j=1
O
((t2 + 1√

logN

)
exp

(
− bj

2 t
2 +O

(t3√
logN

)))
+O(N−ξ log−

1
2 N)

for t log−
1
2

q N in a small neighborhood of 0.
From now on, we assume that bj 6= 0. There is a small neighborhood of 0 for t log−

1
2

q N
such that

O
(

exp
(
− bj

2 t
2 +O

(t3√
logN

)))
= O

(
exp

(
− bj

4 t
2
))

holds.
This yields∣∣∣1

t
(f̂N (t)− ĝN (t))

∣∣∣ =
c∑
j=1
O
(

exp
(
− bj

4 t
2
) t2 + 1√

logN

)
+O(N−ξ log

1
2 N).

Now, the Berry-Esseen inequality with T = c
√

logqN for a small constant c > 0 (cf., for
instance, [30, Theorem IX.5]) implies that

sup
x∈R
|FN (x)−GN (x)| = O

(1√
logN

)
where FN is the cumulative distribution function of T (n) and GN is the cumulative distri-
bution function of the mixture of Gaussian distributions.

If all aj are equal and bj ≥ 0, GN is the distribution function of a mixture of normal (or
degenerate) distributions with mean eT

√
logqN and variances bj ≥ 0. After subtracting the

mean, (2.41) converges to 0. Thus,
T (n)− E(T (n))√

logqN

converges in distribution. If all bj > 0, then the same estimates as above yield the speed of
convergence. �

32 2. OUTPUT SUM OF TRANSDUCERS

This completes the proof of Theorem 2.1.

2.4. Fourier Coefficients—Proof of Theorem 2.2

This section contains the proof of the theorem about the Fourier coefficients. First, we
investigate some Dirichlet series which we will use later. Then, we prove the formulas given in
Theorem 2.2. We use the Hölder condition for Ψ1 to prove that its Fourier series converges.

Lemma 2.4.1. The Dirichlet series
L(z) =

∑
r≥1
blogq rc(rd − (r − 1)d)r−z

is meromorphic in <z > d− 1 with poles in z = d+ 2πil
log q for l ∈ Z. The main part at z = d is

d

(z − d)2 log q −
d

2(z − d)
and, for l 6= 0, the residue at z = d+ 2πil

log q is d
2πil .

Proof. First, we use the binomial theorem to obtain

(2.42) L(z) = dL1(z − d+ 1)−
d−2∑
j=0

(
d

j

)
(−1)d−jL1(z − j)

with L1 =
∑
r≥1blogq rcr−z. The Dirichlet series L1(z) is holomorphic for <z > 1. Thus, the

second summand in (2.42) is holomorphic for <z > d − 1. To obtain the expansion of L(z)
at z with <z = d, we investigate the Dirichlet series L1(z) at <z = 1.

Let k ≥ 0 be an integer. We use Euler-Maclaurin summation with f(x) = kx−z to obtain∑
qk≤r<qk+1

blogq rc
rz

=
∫ qk+1

qk
kx−z dx− k

2 (q−(k+1)z − q−kz)

− kz
∫ qk+1

qk
B1({x})x−z−1 dx

= 1
1− z (kq(k+1)(1−z) − kqk(1−z))

− 1
2(kq−(k+1)z − kq−kz)

− z
∫ qk+1

qk
B1({x})x−z−1blogq(x)c dx

where B1(x) is the first Bernoulli polynomial. For <z > 1, summation over k ≥ 0 yields

L1(z) = 1
1− z

∑
k≥1

qk(1−z)((k − 1)− k)− 1
2
∑
k≥1

q−zk((k − 1)− k)

− z
∫ ∞

1
B1({x})x−z−1blogq(x)c dx

= 1
z − 1

1
qz−1 − 1 + 1

2
1

qz − 1 − z
∫ ∞

1
B1({x})x−z−1blogq(x)c dx.

The second summand and the integral are clearly holomorphic for <z > 0. Thus, L1(z) can
be continued meromorphically to <z > 0 with poles coming from the first summand.

2.4. FOURIER COEFFICIENTS—PROOF OF THEOREM 2.2 33

The expansion around z = 1 is
1

z − 1
1

qz−1 − 1 +O(1) = 1
(z − 1)2 log q −

1
2(z − 1) +O(1).

Thus, by (2.42), we obtain the main part and the residues of L(z) at z = d + 2πil
log q for

l ∈ Z as stated in the lemma. �

Lemma 2.4.2. The Dirichlet series
Z(z) =

∑
r≥1

(rd − (r − 1)d)r−z

is meromorphic in C with simple poles in z = j, j ∈ {1, . . . , d} with residues
(d
j−1
)
(−1)d−j.

Proof. The binomial theorem yields

Z(z) =
d−1∑
j=0

(
d

j

)
(−1)d−j+1ζ(z − j),

where ζ is the Riemann ζ-function. The result follows from the unique pole of ζ(z) at z = 1
with residue 1. �

Denote by ζ(z, α) the Hurwitz ζ-function

ζ(z, α) =
∑
r>−α

(r + α)−z.

Furthermore ψ is the digamma function.

Lemma 2.4.3. For 0 ≤ α < 1 and and an integer 0 ≤ j ≤ d− 1, the Dirichlet series
J(z, α, j) =

∑
r≥1

rj(r + α)−z

is analytic for <z > j + 1. For j = d − 1, it is meromorphic for <z > d − 1 with a simple
pole at z = d with expansion

(2.43)
J(z, α, d− 1) = 1

z − d
− ψ(α+ [α = 0])− [α > 0 ∧ d = 1]α−1

+
d−2∑
k=0

(
d− 1
k

)
(−α)d−1−kζ(d− k, α) +O(z − d).

Proof. As rj(r + α)−z = O(rj−<z), J is analytic for <z > j + 1. Now, let j = d− 1.
The binomial theorem yields

J(z, α, d− 1) =
∑
r≥1

(r + α− α)d−1(r + α)−z

=
d−1∑
k=0

(
d− 1
k

)
(−α)d−1−k∑

r≥1
(r + α)−(z−k)

=
d−1∑
k=0

(
d− 1
k

)
(−α)d−1−k(ζ(z − k, α)− [α > 0]α−z+k

)
= ζ(z − d+ 1, α) +

d−2∑
k=0

(
d− 1
k

)
(−α)d−1−kζ(z − k, α)

34 2. OUTPUT SUM OF TRANSDUCERS

− [α > 0 ∧ d = 1]α−z.

Using the expansion (cf. [103, p. 271])

ζ(z, α) = 1
z − 1 − ψ(α+ [α = 0]) +O(z − 1)

yields (2.43). �

Lemma 2.4.4. Let k ∈ Z. The Dirichlet series

B(z) = w>k

∞∑
r=1

(B∅(r + 1)− 2B∅(r) +B∅(r − 1)) r−z

is analytic for <z > d− 1.

Proof. By the definition (2.29), we have

(2.44) B∅(r + 1)−B∅(r) =
∑

∅6=C⊆{1,...,d}
BC(r),

which can be bounded by ‖BC(r)‖ = O(rd−1 log r). Thus,

B(z) = w>k
∑

∅6=C⊆{1,...,d}

∑
r≥1

(BC(r)−BC(r − 1))r−z

which converges for <z > d− 1 by [2, Theorem 8.1]. �

The vector-valued functions HC(z) are defined by the Dirichlet series

(2.45) HC(z) =
∑
r≥1

BC(r)r−z.

By (2.5) and (2.44), this yields

(2.46) H(z) =
∑

∅6=C⊆{1,...,d}
HC(z) =

∑
r≥1

(B∅(r + 1)−B∅(r))r−z.

Next, we investigate the Dirichlet series HC . In particular, we determine its behavior at
z = d+χk and provide an infinite functional equation to compute its residues at these points.
This will finally give us the residues of H in (2.6). We use a similar method as Grabner and
Hwang in [39].

For this infinite recursion, define

(2.47) δεC,D =
q−1∑
βi=0
i 6∈C∪D

ε−1∑
βi=0
i∈D

∑
βi=ε
i∈C

δβ,

in analogy to the definition of M ε
C,D. As before, the s-th entry of δε is the output label of

the transition starting in s with input label ε. Then, δ = δε∅,∅ holds independently of ε.
Furthermore, δεC,D = d

dtM
ε
C,D1

∣∣∣
t=0

by (2.34).

2.4. FOURIER COEFFICIENTS—PROOF OF THEOREM 2.2 35

Lemma 2.4.5. Let C 6= ∅. For <z > d and C 6= ∅, the Dirichlet series HC(z) satisfies the
following infinite recursion

(2.48)

(
1− q−z

q−1∑
ε=0

M ε
C,∅

)
HC(z) =

q−1∑
ε=1

BC(ε)ε−z + q−z
∑

∅6=D⊆Cc

q−1∑
ε=0

M ε
C,DHC∪D(z)

+ q−z
∑
D⊆Cc

q−1∑
ε=0

δεC,DJ
(
z,
ε

q
, d− |D| − |C|

)

+
∑
D⊆Cc

∑
m≥1

(
−z
m

)
q−z−m

q−1∑
ε=0

M ε
C,Dε

mHC∪D(z +m).

It is analytic for <z > d− |C|+ 1. For |C| = 1 and k 6= 0, w>kHC has a possible simple
pole in z = d + χk with residue the right-hand side of (2.48) evaluated at z = d + χk and
divided by log q. For |C| = 1, w>0 HC has a possible double pole with main part

eT
log q

1
(z − d)2 +

(eT
2 + hC

log q
) 1
z − d

where hC is given in (2.51).

Remark 2.4.6. The infinite recursion (2.48) can be used to numerically compute the values
of HC and its residues at z = d + χk with arbitrary precision. It numerically converges fast
if the first terms of the Dirichlet series HC are computed explicitly.

Proof. As BC(r) = O(rd−|C| log r), the Dirichlet series HC is analytic for <z > d −
|C|+ 1.

By multiplying (2.19) with u(t), differentiating with respect to t at t = 0 and using (2.33),
(2.18) and (2.47), we obtain the recursion

(2.49) BC(qr + ε) =
∑
D⊆Cc

M ε
C,DBC∪D(r) + δεC,Drd−|D|−|C|

for C 6= ∅, {1, . . . , d} and qr+ ε ≥ 0. By (2.16), this recursion is also valid for C = {1, . . . , d}
and qr + ε > 0.

By (2.49), we have

HC(z) =
q−1∑
ε=1

BC(ε)ε−z +
q−1∑
ε=0

∑
r≥1

BC(qr + ε)(qr + ε)−z

=
q−1∑
ε=1

BC(ε)ε−z

+
∑
D⊆Cc

q−1∑
ε=0

∑
r≥1

(M ε
C,DBC∪D(r) + δεC,Drd−|D|−|C|)q−zr−z

(
1 + ε

qr

)−z
for C 6= ∅. Expanding (1 + ε/(qr))−z as a binomial series yields

HC(z) =
q−1∑
ε=1

BC(ε)ε−z

36 2. OUTPUT SUM OF TRANSDUCERS

+
∑
D⊆Cc

q−1∑
ε=0

∑
r≥1

∑
m≥0

(
−z
m

)
M ε
C,Dε

mq−z−mBC∪D(r)r−z−m

+ q−z
∑
D⊆Cc

q−1∑
ε=0

δεC,DJ
(
z,
ε

q
, d− |D| − |C|

)

=
q−1∑
ε=1

BC(ε)ε−z + q−z
∑
D⊆Cc

q−1∑
ε=0

M ε
C,DHC∪D(z)

+ q−z
∑
D⊆Cc

q−1∑
ε=0

δεC,DJ
(
z,
ε

q
, d− |D| − |C|

)

+
∑
D⊆Cc

∑
m≥1

(
−z
m

)
q−z−m

q−1∑
ε=0

M ε
C,Dε

mHC∪D(z +m)

for <z > d and C 6= ∅. Collecting HC(z) on the left-hand side results in (2.48).
To compute the residues of w>kHC for |C| = 1 at z = d+ χk, note that

∑q−1
ε=0 M

ε
C,∅ = M

holds independently of C.
We multiply (2.48) with the left eigenvector w>k which results in

(2.50)

(
1− qd−z exp

(2πik
p

))
w>kHC(z) =

w>k

q−1∑
ε=1

BC(ε)ε−z

+ q−zw>k
∑

∅6=D⊆Cc

q−1∑
ε=0

M ε
C,DHC∪D(z)

+ q−zw>k
∑
D⊆Cc

q−1∑
ε=0

δεC,DJ
(
z,
ε

q
, d− |D| − 1

)

+w>k
∑
D⊆Cc

∑
m≥1

(
−z
m

)
q−z−m

q−1∑
ε=0

M ε
C,Dε

mHC∪D(z +m).

As |C∪D| ≥ 2 or <z+m > d, allHC∪D used on right-hand side of (2.50) are well defined
for <z > d − 1. The Dirichlet series J have simple poles at z = d for |C| = 1 and D = ∅
(Lemma 2.4.3). Thus the right-hand side of (2.50) is meromorphic for <z > d − 1 with a
simple pole at z = d.

The factor 1 − qd−z exp(2πik
p) has a zero exactly for z = d + χk, k ∈ Z. Thus for k 6= 0,

w>kHC has a possible simple pole at z = d + χk. Its residue is the right-hand side of (2.50)
evaluated at z = d+ χk divided by log q.

If k = 0, we have z = d. In this case the expansion of the right-hand side of (2.50) is

eT
z − d

+ hC +O(z − d)

2.4. FOURIER COEFFICIENTS—PROOF OF THEOREM 2.2 37

with

hC = −eT log q − q−dw>0
q−1∑
ε=0

δεC,∅ψ
(ε
q

+ [ε = 0]
)

(2.51)

− [d = 1]w>0
q−1∑
ε=1

δεC,∅ε
−1

+ q−dw>0

q−1∑
ε=0

δεC,∅

d−2∑
k=0

(
d− 1
k

)(
− ε

q

)d−1−k
ζ
(
d− k, ε

q

)

+w>0
q−1∑
ε=1

BC(ε)ε−d + q−dw>0
∑

∅6=D⊆Cc

q−1∑
ε=0

M ε
C,DHC∪D(d)

+ q−dw>0
∑

∅6=D⊆Cc

q−1∑
ε=0

δεC,DJ
(
d,
ε

q
, d− |D| − 1

)

+w>0
∑
D⊆Cc

∑
m≥1

(
−d
m

)
q−d−m

q−1∑
ε=0

M ε
C,Dε

mHC∪D(d+m)

where we used the expansion of J in Lemma 2.4.3, δ =
∑q−1
ε=0 δ

ε
C,∅ and (2.13). �

From the previous lemma and (2.46), the residues of the Dirichlet function H follow.
Only HC with |C| = 1 contribute as all other summands are holomorphic.

Lemma 2.4.7. The Dirichlet function H is meromorphic in <z > d− 1 with possible simple
poles at z = d+ χk, k 6= 0 and a possible double pole at z = d.

The residue at z = d+ χk, k 6= 0 is

1
log q

d∑
j=1

(q−1∑
ε=1

B{j}(ε)ε−d−χk

+ q−d−χk
∑

∅6=D⊆{j}c

q−1∑
ε=0

M ε
{j},DH{j}∪D(d+ χk)

+ q−d−χk
∑

D⊆{j}c

q−1∑
ε=0

δε{j},DJ
(
d+ χk,

ε

q
, d− |D| − 1

)

+
∑

D⊆{j}c

∑
m≥1

(
−d− χk

m

)
q−d−m−χk

q−1∑
ε=0

M ε
{j},Dε

mH{j}∪D(d+m+ χk)
)
.

The main part at z = d is

eT d

log q
1

(z − d)2 +
(eT d

2 +
d∑
j=1

h{j}
log q

) 1
z − d

where h{j} is defined in (2.51).

Now we can prove the formulas for the Fourier coefficients.

38 2. OUTPUT SUM OF TRANSDUCERS

Proof of Theorem 2.2. The periodic fluctuation Ψ1 of the expected value is a p-
periodic function. We use the explicit expression of Ψ1 given in Lemma 2.3.9.

Due to absolute convergence, the k-th Fourier coefficient of Ψ1(x) is

ck = 1
p

∫ p

0
Ψ1(x)e−

2πik
p
x
dx

= −eT
p

∫ p

0
{x}e−

2πik
p
x
dx−

∑
l∈P

∞∑
m=0

q−dme
− 2πilm

p Il,m

with

Il,m = 1
p

∫ p

0
q−d{x} exp

(2πil
p
bxc − 2πik

p
x
)
fl((x0 . . . xm)q) dx

and q{x} = (x0.x1 . . .)q. The value of the first integral is given by − eT
2 for k = 0, and

[k ≡ 0 mod p] eT
χk log q otherwise. Thus, we focus on the second integral Il,m.

First, we partition the interval [0, p) into intervals [r, r + 1) for r = 0, . . . , p − 1. After
simplifying the sum of p-th roots of unity, we obtain

Il,m = [k ≡ l mod p]
∫ 1

0
q−dxfl((x0 . . . xm)q)e−

2πik
p
x
dx.

After partitioning the interval [0, 1) into the intervals [logq r − m, logq(r + 1) − m) for
r = qm, . . . , qm+1 − 1, the function fl((x0 . . . xm)q) is constant on the interval of integration.
Therefore, we obtain

∑
l∈P

∞∑
m=0

q−mde
− 2πilm

p Il,m = 1
(d+ χk) log q

∞∑
r=1

fk mod p (r)
(
r−d−χk − (r + 1)−d−χk

)
.

Next, consider the function

A(z) =
∞∑
r=1

fk mod p (r)
(
r−z − (r + 1)−z

)
.

We know that fl(r) = O(rd−1 log r). Thus, A(z) is analytic for <z > d− 1.
By summation by parts, we can rearrange the series for <z > d and obtain a sum of

Dirichlet series

(2.52) A(z) = [p | k]eT S1(z) + iw′>k 1S2(z)− S3(z) + qd exp
(2πik

p

)
S4(z)

with coefficients s1(r), s2(r), s3(r) and s4(r) respectively. These coefficients are differences
of the four summands in fk mod p(r) and fk mod p(r − 1) in (2.31), respectively, e.g.,

s1(r) = blogq(r)c(rd − (qbr/qc)d) + (qbr/qc)d

− [r > 1]
(
blogq(r − 1)c((r − 1)d − (qb(r − 1)/qc)d)− (qb(r − 1)/qc)d

)
.

2.4. FOURIER COEFFICIENTS—PROOF OF THEOREM 2.2 39

After some simplifications using b r−1
q c = b rq c − [q | r] and blogq(r − 1)c = blogq rc −

[r is a power of q] (for r ≥ 2), we obtain

(2.53)

s1(r) = blogq rc(rd − (r − 1)d)
− [q | r]qdblogq rq−1c((rq−1)d − (rq−1 − 1)d)
+ [r 6= 1 is a power of q]((r − 1)d − (r − q)d),

s2(r) = rd − (r − 1)d − [q | r]qd exp
(2πik

p

)
((rq−1)d − (rq−1 − 1)d),

s3(r) = w>k (B∅(r)−B∅(r − 1)),
s4(r) = [q | r]w>k (B∅(rq−1)−B∅(rq−1 − 1)).

For <z > d, we can split up the summation into the different cases in (2.53). This yields

S1(z) = (1− qd−z)L(z) +
d−1∑
j=0

(
d

j

)
(−1)d−j 1− qd−j

qz−j − 1 ,

S2(z) =
(
1− qd−z exp

(2πik
p

))
Z(z),

S3(z) = w>kH(z)−B(z),
S4(z) = q−zw>kH(z)− q−zB(z)

where we used (2.44), (2.46) and the Dirichlet series defined in Lemmas 2.4.1, 2.4.2 and 2.4.4.
Thus, in (2.52), we obtain

(2.54)

A(z) = [p | k]eT
d−1∑
j=0

(
d

j

)
(−1)d−j 1− qd−j

qz−j − 1

+ iw′>k 1
(
1− qd−ze

2πik
p
)
Z(z)

−
(
1− qd−ze

2πik
p
)
w>kH(z)

+ [p | k]eT (1− qd−z)L(z)

+
(
1− qd−ze

2πik
p
)
B(z).

We want to evaluate A at z = d + χk. The factors 1 − qd−ze
2πik
p are zero if and only if

z = d+ χk. Thus, the following Dirichlet series contribute to (2.54):
• The Dirichlet series Z only contributes if k = 0 (Lemma 2.4.2).
• The Dirichlet series w>kH has poles at z = d + χk for k ∈ Z. The possible double
pole at z = d cancels with the one of L (Lemma 2.4.7).
• The residues of the Dirichlet series L contribute to the Fourier coefficients. The
possible double pole at z = d cancels with that of w>0 H (Lemma 2.4.1).
• As the Dirichlet series B converges for <z > d − 1 (Lemma 2.4.4), it does not
contribute to the Fourier coefficients.

As the second order poles of w>0 H and L cancel, the right-hand side of (2.54) is well
defined for the limit z → d+ χk. After computing the limit and simplifying the summation,
we obtain (2.6).

40 2. OUTPUT SUM OF TRANSDUCERS

0 | 0, . . . , q − 1 | q − 1

Figure 2.7. Transducer to compute the q-ary sum-of-digits function.

Then Lemma 2.3.12 and Bernstein’s theorem (cf. [105, p. 240]) imply the absolute and
uniform convergence of the Fourier series. �

Now we use Theorem 2.2 to prove Corollary 2.2.5.

Proof of Corollary 2.2.5, [102]. The transducer in Figure 2.7 computes the q-ary
sum-of-digits function sq(n) and we can use Theorem 2.2.

We transform the Dirichlet series
D(z) =

∑
m≥1

(sq(m)− sq(m− 1))m−z

in two different ways. This series is absolutely convergent for <z > 1.
First, we can rearrange the summation of the Dirichlet series D(z) such that the Dirichlet

series H(z) =
∑
m≥1 sq(m)m−z, defined in (2.45), appears. We have

(2.55)

|H(z)− 1| = O
(
2−<z +

∑
m≥3

m−<z logm
)

= O
(
2−<z +

∫ ∞
2

x−<z log x dx
)

= O(2−<z)
for <z > 1. By partial summation, we obtain

D(z) = 1− 2−z +
∑
m≥2

sq(m)(m−z − (m+ 1)−z)

= 1− 2−z +
∑
m≥2

sq(m)m−z
(
1−

(
1 +m−1)−z).

Expanding the binomial series yields

(2.56)

D(z) = 1− 2−z −
∑
m≥2

sq(m)m−z
∑
l≥1

(
−z
l

)
m−l

= 1− 2−z −
∑
l≥1

(
−z
l

)
(H(z + l)− 1).

By (2.56), we have

D(z) = 1− 2−z + zH(z + 1)− z −
∑
l≥2

(
−z
l

)
(H(z + l)− 1)

which is equivalent to

H(z + 1) = 1
z
D(z) + 1

z
(2−z − 1) + 1−

∑
l≥2

1
l

(
−z − 1
l − 1

)
(H(z + l)− 1)

2.4. FOURIER COEFFICIENTS—PROOF OF THEOREM 2.2 41

for <z > 1. The sum on the right-hand side is holomorphic at <z = 0 because of (2.55). By
meromorphic continuation, this equation also holds for <z = 0. This yields

(2.57) Resz=1+χk H(z) = Resz=χk H(z + 1) = Resz=χk
1
z
D(z).

On the other hand, we split up the summation in the definition of D(z) into the q equiv-
alence classes modulo q and we use the recursions3

sq(qm+ ε) = sq(m) + ε

for 0 ≤ ε < q. This results in

sq(m)− sq(m− 1) = 1 + [q | m]
(
sq
(
q−1m

)
− sq

(
q−1m− 1

)
− q

)
for m ≥ 1. Thus we obtain

D(z) =
∑
m≥1

(
1 + [q | m]

(
sq
(
q−1m

)
− sq

(
q−1m− 1

)
− q

))
m−z

= ζ(z) + q−zD(z)− q1−zζ(z).

Thus, we obtain4

(2.58) D(z) = 1− q1−z

1− q−z ζ(z).

This formula yields

(2.59) Resz=χk D(z) = −q − 1
log q ζ(χk).

For k = 0, we further use the expansion

ζ(z) = −1
2 −

1
2 log(2π)z +O(z2)

(cf. [23, 25.6.1 and 25.6.11]) and (2.58) to obtain

(2.60) D(z) = q − 1
2z log q + (q − 1) log (2π)

2 log q − q + 1
4 +O(z).

Thus, by (2.55) and (2.59), we obtain

Resz=1+χk H(z) = 1
χk

Resz=χk D(z) = − q − 1
χk log q ζ(χk)

for k 6= 0. For k = 0, (2.60) and (2.57) yield

Resz=1H(z) = (q − 1) log (2π)
2 log q − q + 1

4 .

Now, (2.6) with eT = q−1
2 and w′>0 = 0 yields (2.8). �

3Actually, these recursions are (2.35).
4Note that this well-known identity can also be derived [85] from sq(m)− sq(m− 1) = 1− (q − 1)vq(m),

where vq(m) is the q-adic valuation of m.

http://dlmf.nist.gov/25.6.E1
http://dlmf.nist.gov/25.6.E11

42 2. OUTPUT SUM OF TRANSDUCERS

2.5. Non-Differentiability—Proof of Theorem 2.3

In this section, we give the proof of the non-differentiability of Ψ1(x). We follow the
method presented by Tenenbaum [98], see also Grabner and Thuswaldner [40].

Proof of Theorem 2.3. Let r = (rm−1 . . . r0)q be the value of the reset sequence
(rm−1 . . . r0) leading to state ν.

Assume that Ψ1 is differentiable at x ∈ [0, 1). Let qx = (ε0.ε1 . . .)q be the standard q-ary
digit expansion choosing the representation ending on 0ω in the case of ambiguity. Further,
let xk be such that qxk = (ε0.ε1 . . . εk)q. Thus, we have limk→∞ xk = x. For f ∈ {0, 1},
the function Lf : Z → Z is defined as Lf (k) = ck + f with c a positive integer such that
c > 1

ξ − 1. Define Nk = qxk+k+Lf (k) and h(k) = bqck+ c
c+1xk−m−2c. Let yk and zk be such that

Nk + qck−m−1r = qyk+k+Lf (k) and Nk + qck−m−1r + h(k) = qzk+k+Lf (k).
From these definitions, we know that

h(k)
Nk

= Θ(q−k),

N1−ξ
k logNk = o(h(k))

for k →∞. Apart from xk, also, yk and zk converge to x and satisfy the following bounds:

zk − yk = 1
log q

h(k)
Nk

+O
(
h(k)2

N2
k

)
,

|yk − xk| = O(q−k),
x− xk = O(q−k).

Now, we compute

(2.61) 1
h(k)

∑
n∈Nk

T (n)

in two different ways where Nk = {n ∈ Z | Nk + qck−m−1r ≤ n < Nk + qck−m−1r + h(k)}.
First, observe that qck−1 | Nk and h(k) < qck−m−1. Thus, the digit representations of the

three summands in Nk + qck−m−1r + n are not overlapping at non-zero digits for n < h(k).
Since the digit expansion of r is a reset sequence, we have

T (Nk + qck−m−1r + n) = e>ν b(Nkq
−ck+1) + T (qck−m−1r + n)− b(ν)

where e>ν b(N) is the output of the transducer when starting in state ν with input N and b(ν)
is the final output at state ν.

Thus, we have
1

h(k)
∑
n∈Nk

T (n) = 1
h(k)

∑
0≤n<h(k)

T (Nk + qck−m−1r + n)

= e>ν b(Nkq
−ck+1)− b(ν) + 1

h(k)
∑

n<h(k)
T (qck−m−1r + n)

where only the first summand depends on Lf (k) and hence on f .

2.6. RECURSIONS—PROOF OF THEOREM 2.4 43

Taking the difference in (2.2), there is a second way of computing the sum in (2.61). Using
the periodicity and continuity of Ψ1(x) yields

(2.62)

∑
n∈Nk

T (n) = (Nk + qck−m−1r)eT (zk − yk) + h(k)eT (x+ k + Lf (k))

+ (Nk + qck−m−1r)(Ψ1(zk)−Ψ1(yk))
+ h(k)Ψ(x) + o(h(k)).

Next, we use our assumption that Ψ1 is differentiable at x to replace the difference by the
derivative

Ψ1(zk)−Ψ1(yk) = Ψ′1(x)(zk − yk) + o(|zk − x|) + o(|x− yk|).
Now, we insert this into (2.62), divide by h(k) and obtain

1
h(k)

∑
n∈Nk

T (n) = eT
log q + eT (x+ k + Lf (k)) + 1

log qΨ′1(x) + Ψ1(x) + o(1).

Thus, we have the following equality

e>ν b(Nkq
−ck+1)− b(ν) + 1

h(k)
∑

n<h(k)
T (qck−m−1r + n)

= eT
log q + eT (x+ k + Lf (k)) + 1

log qΨ′1(x) + Ψ1(x) + o(1)

twice, for f ∈ {0, 1}. Subtracting these two from each other yields

e>ν b(qxk+k+2)− e>ν b(qxk+k+1) = eT + o(1).

Since the left-hand side is an integer, but the right-hand side is not for k large enough, this
contradicts our assumption that Ψ1 is differentiable at x. �

2.6. Recursions—Proof of Theorem 2.4

In this section, we construct a transducer associated to the sequence defined by the recur-
sion in (2.9). All inequalities, maxima and minima in this section are considered coordinate-
wise.

Define the function A : Nd0 → Nd0 ∪ {∞} by

A(qκn+ λ) =
{
qκλn+ rλ if qκλn+ rλ ≥ 0,
∞ else

for 0 ≤ λ < qκ1 and n ≥ 0. So, if A(n) < ∞, then the recursion (2.9) can be used for
this argument because the argument on the right-hand side is non-negative, i.e., a(n) =
a(A(n)) + tn mod qκ .

First, we construct a non-deterministic transducer T̃ . A priori, it has an infinite number
of states; later, we will prove that only finitely many of them are accessible. We then simplify
it to obtain a finite, deterministic, subsequential, complete transducer T .

The set of states of T̃ is

{(l, j)F | l ∈ Zd, j ∈ N0} ∪ {(l, j)N | l ∈ Zd, j ∈ N0}.

44 2. OUTPUT SUM OF TRANSDUCERS

The initial state is (0, 0)F ; all states (l, j)F are final states with final output a(l) if l ≥ 0 and
final output 0 otherwise5. As an abbreviation, we will frequently speak about “a state (l, j)”
if we do not want to distinguish between (l, j)F and (l, j)N . We call l the carry and j the
level of the state (l, j). A state (l, j)F is called simple, if it is final, l ≥ 0 and j ≤ κ.

There are two types of transitions in T̃ , recursion transitions and storing transitions.
Each state is either the origin of one recursion transition or of qd storing transitions.

There is a recursion transition leaving (l, j) if
• j ≥ κ and
• A(qjn+ l) <∞ for all n ≥ 0 with n 6= 0.

In that case, we write l = qκs + λ for a 0 ≤ λ < qκ1 and the transition leads to the state
(l′, j′)N with j′ = κλ + j − κ and l′ = qκλs+ rλ. The input label is empty, the output label
is tλ. Thus
(2.63) A(qjn+ l) = qj

′
n+ l′

for n ≥ 0 with n 6= 0. Note that (2.63) holds for n = 0 if and only if l ≥ 0 and l′ ≥ 0.
Otherwise, there are storing transitions from (l, j) to (qjε + l, j + 1)F with input ε and

output 0 for all 0 ≤ ε < q1.
We now define the classes F1, . . . , FK announced in Section 2.2.6. For each accessible

cycle in T̃ with simple states and input 0, the carries of its states form one of these classes.
The other classes are the singletons of those carries l ≥ 0 in the accessible part of T̃ with
A(l) = ∞. These sets will turn out to be disjoint by Lemma 2.6.6 and the finiteness of K
will follow from the finiteness of the accessible part of T̃ (Lemma 2.6.4).

Remark 2.6.1. We also give a combinatorial description of those classes F1, . . . , FK which
do not come from cycles in T̃ : Let l ≥ 0 be a carry of an accessible state of T̃ . Then A(l) =∞
if and only if there is a recursion transition from some (l, j) to some (l′, j′) with l′ 6≥ 0.

Proof. Let (l, j0) be any accessible state with carry l. We use the longest path with
input 0 using storing transitions only to arrive in some state (l, j)—again, finiteness of this
process will follow from the finiteness of the accessible part and the fact that the levels increase
along storing transitions. As there is no storing transition leaving (l, j) by construction, there
is a recursion transition from (l, j) to some (l′, j′). By the remark following (2.63), l′ = A(l)
or l′ 6≥ 0. �

As usual, if reaching a state which is the origin of a transition with empty input, the
process may stay in that state or may continue to the destination state writing the output
of the transition without reading an input. This is the reason why the transducer is non-
deterministic.

Note that in our case, transitions with empty input (i.e., recursion transitions) lead to
non-final states and transitions with non-empty input (i.e., storing transitions) lead to final
states. Combined with the fact that each state is either the origin of one recursion transition
or of qd storing transitions, processing an input is in fact deterministic: For every admissible
input—we do not allow leading zeros—, there exists exactly one path leading from the initial
state to a final state with the given input. This will enable us to simplify the transducer T̃
to a deterministic transducer T later on.

5In fact, we will prove that a path with valid input will never end in a state (l, j)F with l 6≥ 0, but the
framework of subsequential transducers requires us to specify a final output even in that case. The non-final
states (l, j)N will disappear in the reduction to T anyway.

2.6. RECURSIONS—PROOF OF THEOREM 2.4 45

We need the property that the carries of accessible states are not “too negative”:

Lemma 2.6.2. (1) If (l, j) is an accessible state, then
(2.64) qjn+ l ≥ 0

holds for all n ≥ 0 with n 6= 0.
(2) If d ≥ 2 and (l, j) is an accessible state, then

l ≥ 0.
(3) Any accessible transition with input ε 6= 0 leads to a state (l, j) with l ≥ 0.
(4) If d = 1 and (l, j) is an accessible state, then

l ≥ lmin = min
λ

{
0,
−1 + rλ

qκλ

1
qκλ −

1
qκ

}
.

Proof. The first assertion is easily shown by induction and (2.63). The second assertion
follows by induction and from the assumption that rλ ≥ 0 holds for all λ. To prove the third
assertion, we use (2.64) on the originating state of the transition.

The last assertion is shown by induction. It is clearly valid in the initial state. For storing
transitions, the value of l is non-decreasing. If there is a recursion transition from some (l, j)
to some (l′, j′)N , we have

l′ = qκλ
⌊
l

qκ

⌋
+ rλ ≥ qκλ

(
l

qκ
− 1 + rλ

qκλ

)
≥ qκλ

(
lmin
qκ

+ lmin

(1
qκλ
− 1
qκ

))
= lmin.

�

As leading zeros are not allowed, the last transition in the computation path of any valid
input has input ε 6= 0 and thus leads to a state with a non-negative carry.

For our further investigations and finally the correctness proof, we need a suitable invari-
ant:

Lemma 2.6.3. Consider a path from (l, j) to (l′, j′) with input label εm−1 . . . ε0, output label
δm′−1 . . . δ0 using L recursion transitions and n ≥ 0. Thus m′ is the number of transitions
and m = m′ − L is the number of storing transitions.

If n 6= 0 or if the last transition is a storing transition with non-zero input εm−1, then
AL(qj(qmn+ (εm−1 . . . ε0)q) + l) = qj

′
n+ l′,(2.65)

and, if the recursion (2.9) is well-posed,

a(qj(qmn+ (εm−1 . . . ε0)q) + l) = a(qj′n+ l′) +
m′−1∑
k=0

δk.(2.66)

Proof. First consider the case that the path consists of a single transition. If it is a
storing transition, then L = 0, m = 1, and all assertions follow from the definition and
Lemma 2.6.2. On the other hand, if the transition is a recursion transition, we have L = 1,
m = 0, and all assertions again follow from the definition, Lemma 2.6.2 and (2.63).

By induction on the length of the path, we obtain (2.65) and (2.66). �

We are now able to prove the finiteness of the accessible part.

46 2. OUTPUT SUM OF TRANSDUCERS

Lemma 2.6.4. The transducer has a finite number of accessible states.

Proof. For a recursion transition from (l, j) to (l′, j′)N , we have j > j′. Thus, there are
no infinite paths consisting only of recursion transitions. In particular, there exist no cycles
of recursion transitions.

For d = 1, let J ≥ κ be minimal such that qJ−κ ≥ −
⌊ lmin
qκ
⌋
−minλ q−κλrλ. Then A(qj+l) <

∞ holds for all accessible states (l, j) with j ≥ J . This implies j ≤ J for all accessible states
(l, j). For d ≥ 2, we have j ≤ κ =: J for all accessible states (l, j). Thus there are at most J
consecutive recursion transitions.

To prove that only finitely many states are accessible, we introduce the notion of heights
of states: The height of a state (l, j) is defined to be h = lq−j . If there exists a storing
transition from (l, j) of height h to (l′, j′)F of height h′, we have 1

qh ≤ h′ ≤ 1
qh + 1. If

there exists a recursion transition from (l, j) of height h to (l′, j′)N of height h′, we have
h+ s− − 1 ≤ h′ ≤ h+ s+ where s+ = maxλ{rλq−κλ , 0} and s− = minλ{rλq−κλ , 0}.

Assume that there is a path from (l, j) of height h to (l′, j′) of height h′ with L ≤ J
recursion transitions and one storing transition (in this order). Then we have

1
q
h+ J

q
(s− − 1) ≤ h′ < 1

q
h+ J

q
s+ + 1.

We can subdivide every path in the transducer starting with the initial state into a
sequence of such paths and a final path consisting of only recursion transitions. Let hm be
the sequence of heights of the states where the subpaths starts. Then, we have

1
q
hm + J

q
(s− − 1) ≤ hm+1 <

1
q
hm + J

q
s+ + 1.

Iteration leads to
J(s− − 1)
q − 1 ≤ hm ≤

Js+ + q1
q − 1

for all m. Therefore, the height h of an accessible state is bounded. Since 0 ≤ j ≤ J is also
bounded, the integer carry l = qjh of an accessible state (l, j) can only take finitely many
different values. The accessible part of the transducer is thus finite. �

Lemma 2.6.5 ([46]). Let P be an infinite path with input zero starting at some state of level
j such that all of its states have non-negative carries. Then, after at most j transitions, it
reaches a state (l0, κ). From that point on, it only passes through simple states, namely

(l0, κ), (l1, j1)N , (l1, j1 + 1)F , . . . , (l1, κ)F ,
(l2, j2)N , (l2, j2 + 1)F , . . . , (l2, κ)F ,
(l3, j3)N , (l3, j3 + 1)F , . . . , (l3, κ)F ,
. . .

where li = A(li−1) and ji = κli−1 mod qκ for i ≥ 1.

Proof. Denote the first state of P by (l, j).
First, assume that j ≥ κ. As storing transitions always increase the level and the levels

are bounded by Lemma 2.6.4, the path has to contain at least one recursion transition. Thus
the path starts with k ≥ 0 storing transitions leading from (l, j) to (l, j + k), followed by a
recursion transition from (l, j + k) to (l′, j′). By assumption, we have l ≥ 0 and l′ ≥ 0. Thus
A(l) = l′ 6= ∞ by (2.63). Therefore, there is a recursion transition leaving (l, j), i.e., there

2.6. RECURSIONS—PROOF OF THEOREM 2.4 47

were no leading storing transitions. Recall that j′ < j holds for any recursion transition. We
repeat the argument at most j − κ times until we reach a simple state.

If we are in a simple state (l′, j′) with j′ < κ, the next κ − j′ steps will be storing
transitions, leading to (l′, κ). This means that after at most j steps, we reach a state (l0, κ).

We now apply the argument of the second paragraph again. Thus a recursion transition
leads to (l1, j1) with l1 = A(l0) and j1 = κl0 mod qκ .

The remainder of the lemma follows by induction. �

As an auxiliary structure for deciding the well-posedness of the recursion, we introduce
the recursion digraph R. It has set of vertices Nd0 and arcs (n, A(n)) with label tn mod qκ for
all n ∈ Nd0 with A(n) <∞. Thus a(n) can be computed from the successor of n in R using
the recursion (2.9). By definition, each vertex of R has out-degree 1 or 0. Each component
of R is a functional digraph or a rooted tree (oriented towards the root).

If

‖n‖∞ > max
λ

‖λ‖∞ + ‖rλ‖∞
qκ − qκλ

,

we have
qκ‖n‖∞ − ‖λ‖∞ > qκλ‖n‖∞ + ‖rλ‖∞

and therefore
‖qκn+ λ‖∞ > ‖qκλ + rλ‖∞

for all 0 ≤ λ < qκ1. Thus we have ‖n′‖∞ < ‖n‖∞ for all but finitely many arcs (n,n′) of R.
Thus for every vertex of R, there is a unique path starting in this vertex and leading to

a vertex with out-degree 0 or a finite cycle.
From this description, it is clear that the recursion is well-posed if and only if
• the sum of the labels of each cycle in R is 0 and
• the set I consists of one element for every cycle in R as well as of the vertices with
out-degree 0 in R.

We now prove the essential connection between the recursive digraph and the transducer
T̃ . This also implies that the classes F1, . . . , FK are disjoint.

Lemma 2.6.6. There exists a bijection between cycles in the recursive digraph R and acces-
sible cycles in the transducer T̃ with input 0 and simple states. Corresponding cycles under
this bijection have the same output sum and sum of labels.

Proof. Let n0, . . . , nL = n0 be a cycle in the recursive digraph with nR ≥ 0 for all
0 ≤ R < L.

Let k0 be the length of the path P0 in T̃ starting in the initial state and reading the q-ary
expansion of n0.

We determine the destinations of certain paths in the transducer associated with the cycle
in the recursive digraph.

Statement 2.6.7. Let k ≥ k0 and P be the path from the initial state (0, 0) to (l, j) of length
k whose input label is the q-ary expansion of n0, padded with leading zeros. Assume that the
number of recursion transitions in this path is LQ+R for some Q ≥ 0 and 0 ≤ R < L. Then
l = nR ≥ 0.

48 2. OUTPUT SUM OF TRANSDUCERS

Proof of Statement 2.6.7. Let k′ = k−(LQ+R) be the number of storing transitions
of P. By (2.65), we have

(2.67) ALQ+R(qk′n+ n0) = qjn+ l
for n ≥ 0, n 6= 0.

Note that for M ≥ κ and n ≡ n′ (mod qM) with A(n) < ∞ and A(n′) < ∞, the
definition of A implies A(n) ≡ A(n′) (mod qM−κ).

Together with the definitions of nR and the recursive digraph R as well as (2.67), this
implies

nR = ALQ+R(n0) ≡ ALQ+R(qk′+M1 + n0)

= qj+M1 + l (mod qk
′+M−(LQ+R)κ)

for sufficiently large M . Coarsening yields
nR ≡ l (mod qM−(LQ+R)κ),

still valid for sufficiently large M . As l is bounded by Lemma 2.6.4, this implies nR = l. �

Now, we conclude the proof of Lemma 2.6.6.
Let P be the infinite path in T̃ starting at the destination of P0 and reading zeros. By

Lemma 2.6.5 applied to P together with Statement 2.6.7 applied to P0 concatenated with
prefixes of P, P leads to a cycle in T̃ . Its states are simple and have carries n0, . . . , nL−1
and levels determined by n0, . . . , nL−1 as in Lemma 2.6.5.

This construction defines a map from the cycles of the recursive digraphR to the accessible
cycles with input 0 in the transducer with simple states. This map is injective by construction.
Under this map, the sum of the labels of the cycle in R equals the sum of output labels of
the cycle in T̃ by construction.

On the other hand, let
(n0, j0), (n0, j0 + 1), . . . , (n0, κ),
(n1, j1), (n1, j1 + 1), . . . , (n1, κ), . . .
(nL−1, jL−1), (nL−1, jL−1 + 1), . . . , (nL−1, κ),
(n0, j0)

be an accessible cycle of simple states in the transducer with input 0. Lemma 2.6.5 yields
A(nR) = nR+1 mod L ≥ 0 for 0 ≤ R < L. Thus, this cycle in the transducer is the image of
the cycle n0, . . . , nL = n0 in the recursive digraph. Thus the map is surjective. �

To use Theorem 2.1, we simplify T̃ to obtain the deterministic transducer T , that is one
without transitions with empty input. As a first step, we remove all non-accessible states.
By Lemma 2.6.4, this leaves us with finitely many states.

By Lemma 2.6.4 and the fact that recursion transitions decrease the level, the length of
paths consisting of recursion transitions only is bounded. As a recursion transition always
leads to a non-final state, processing an input never ends with a recursion transition.

Consider a recursion transition from (l, j) to (l′, j′)N with output t such that no recursion
transition originates in (l′, j′)N . For each transition originating in (l′, j′)N , say to some
(l′′, j′′)F with input ε and output t′, we insert a storing transition from (l, j) to (l′′, j′′)F with
input ε and output t + t′. Then, the recursion transition from (l, j) to (l′, j′)N is removed.
The number of recursion transitions decreased by one and the new transducer generates the

2.6. RECURSIONS—PROOF OF THEOREM 2.4 49

same output as the old transducer. We repeat this process until there are no more recursion
transitions. Then, all non-final states are inaccessible and are removed.

Proof of Theorem 2.4. By Lemma 2.6.6 and the characterization of well-posedness
via the recursive digraph, the recursion (2.9) is well-posed if and only if I consists of exactly
one representative of each of the sets Fj , 1 ≤ j ≤ K, and if T̃ has no cycle with simple states,
input 0 and non-vanishing output sum.

We now show that the cycles of simple states with input 0 in T are exactly the reductions
of the cycles of simple states with input 0 in T̃ . As a cycle with simple states and input 0 in
T̃ does not have consecutive recursion transitions (cf. Lemma 2.6.5), it is reduced to a cycle
with simple states in T . On the other hand, consider a cycle of T̃ with input 0 containing a
non-simple state. If there is a state of level > κ, the state with largest level is final and is not
removed. If all states have level ≤ κ, then there are no two consecutive recursion transitions,
so no negative carry is completely removed from the cycle in the reduction to T . Therefore,
such a cycle is not reduced to a cycle with simple states and input 0 in T .

Therefore, the assertion on well-posedness is proved.
To prove correctness of the transducer, we use (2.65) with (l, j) = (0, 0), the joint q-

ary expansion of n as input leading to some state (l′, j′)F with output δm′−1 . . . δ0. By
Lemma 2.6.2, we have l′ ≥ 0 because the last transition is a storing transition with non-zero
input. Thus by (2.66), a(n) = a(l′) +

∑m′−1
k=0 δk. As the final output of (l′, j′)F is defined to

be a(l′), we obtain T (n) = a(l′) +
∑m′−1
k=0 δk = a(n), as requested. �

CHAPTER 3

Variances and Covariances in the Central Limit Theorem for
the Output of a Transducer

In this chapter, we study the joint distribution of the input sum and the output sum
of a deterministic transducer. Here, the input of this finite state machine is a uniformly
distributed random sequence of real numbers.

We give a simple combinatorial characterization of transducers for which the output sum
has bounded variance, and we also provide algebraic and combinatorial characterizations of
transducers for which the covariance of input and output sum is bounded, so that the two
are asymptotically independent.

The results of Theorem 3.3 have been implemented [51] in the open-source mathematics
software system SageMath [95], based on its package for finite state machines, see [49] or
Chapter 6. This code is included in SageMath 6.3.

The content of this chapter corresponds to [56], which appeared in the European Journal
of Combinatorics. This is joint work with Clemens Heuberger and Stephan Wagner.

In Chapter 4, we generalize the results of this chapter to more than one output of the
transducer and not independently identically distributed input sequences. While writing
this thesis, this generalization was considered after [56] has appeared, thus the results are
presented separately in two different chapters.

3.1. Introduction

We asymptotically investigate the two random variables sum of the input and sum of
the output of a transducer for inputs of length n for n → ∞. If these two random vari-
ables converge in distribution to independent random variables, then the transducer is called
independent.

Our probability model is the equidistribution on all input sequences of a fixed length n.
Under this probability model, the expected value of the sum of the input and the output are
e1n and e2n + O(1), respectively, for some constants e1 and e2. For the sum of the input,
the expressions are exact without error term because the input letters are independent and
identically distributed. Furthermore, under appropriate connectivity conditions, the variances
and the covariance turn out to be v1n, v2n + O(1) and cn + O(1), respectively, for suitable
constants v1, v2 and c. We investigate for which transducers one of the constants v2 and c is
zero.

A special case of the output sum is the Hamming weight, which is the number of non-zero
elements of a sequence. To give an example of an independent transducer, we discuss the
Hamming weight of the non-adjacent form as defined by Reitwiesner [89] in Example 3.2.5.
In [61], Heuberger and Prodinger prove that the Hamming weights of the standard binary
expansion and the non-adjacent form are asymptotically independent. The independent trans-
ducer computing these Hamming weights is shown in Figure 3.2.

51

52 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

We formally define our setting in Section 3.2. In Section 3.3, we state our main results. In
Section 3.4, we present several examples where these main results are applied. In Section 3.5,
we give the proofs of the theorems.

We give an algebraic description of independent transducers in Theorem 3.3. We also state
there that the input sum and the output sum are asymptotically jointly normally distributed
if the variance-covariance matrix is invertible. In Theorem 3.4, we present a combinatorial
characterization of independent transducers.

In Section 3.4, we give a variety of examples of independent and dependent transducers
and transducers with bounded and unbounded variance to illustrate our results. One of those
examples is a transducer computing the minimal Hamming weight of τ -adic digit represen-
tations on a digit set D. Building on the results of [42], we prove that the variance of the
minimal Hamming weight is unbounded, which yields a central limit theorem.

In Section 3.5, we also prove an extension of the 2-dimensional Quasi-Power Theorem [44]
to singular Hessian matrices as an auxiliary result.

3.2. Preliminaries

A transducer is defined to consist of a finite set of states {1, 2, . . . , S}, a finite input
alphabet AI ⊆ R, an output alphabet AO ⊆ R, a set of transitions E ⊆ {1, 2, . . . , S}2 × AI
with input labels in AI , output labels δ : E → AO and the initial state 1. The transducer is
called deterministic if for all states s and input labels ε ∈ AI , there exists at most one state
t such that (s, t, ε) ∈ E . Furthermore, the transducer is said to be subsequential (cf. [91]) if
it is deterministic, every state is final and it has a final output a : {1, 2, . . . , S} → AO. A
transducer is called complete if for every state s and digit ε ∈ AI , there is a transition from
s to a state t with input label ε, i.e., (s, t, ε) ∈ E .

Definition 3.2.1. A transducer is said to be finally connected if there exists a state which
can be reached from any other state. The final component of such a transducer is defined to
be the transducer induced by the set of states which can be reached from any other state. A
finally connected transducer is said to be finally aperiodic if the underlying graph of the final
component is aperiodic (i.e., the gcd of the lengths of all walks starting and ending at a given
vertex is 1).

Remark 3.2.2. The final component of a transducer is a strongly connected component of
the underlying graph of the transducer. If the underlying graph is strongly connected, then
being finally aperiodic is equivalent to being aperiodic. We then call the transducer strongly
connected and aperiodic. The final component of a complete transducer is complete itself.

In the following, we consider subsequential, complete, deterministic, finally connected,
finally aperiodic transducers. We require that the input alphabetAI has at least two elements.
Throughout the chapter, we use ε for the input of a transition and δ for the output of a
transition. We denote the number of states in the final component by N .

The input of the transducer is a sequence in A∗I . It is not important whether we read
the input from right to left or in the other direction, we just have to fix it for one specific
transducer. The output of the transducer is the sequence of output labels of the unique path
starting at the initial state 1 with the given input as input label, together with the final
output label of the final state of this path.

Let Xn be a uniformly distributed random variable on AnI . Let Output(Xn) be the sum of
the output sequence of the transducer if the input is Xn. Furthermore, let Input(Xn) be the

3.2. PRELIMINARIES 53

01

1 | 0

0 | 1
0 | 11 | 1

Figure 3.1. Subsequential, complete, strongly connected, aperiodic trans-
ducer from Example 3.2.3.

sum of the input sequence. Without loss of generality, we fix the direction of reading from
right to left.

Example 3.2.3. The transducer in Figure 3.1 is a subsequential, complete, strongly con-
nected, aperiodic transducer.

For example, when reading the input (110) from right to left, the transducer in Figure 3.1
writes the output (1101). The leftmost 1 in the output is the final output of the last state.
The output sum is Output(110) = 3.

We investigate the 2-dimensional random vector

Ωn = (Input(Xn),Output(Xn))>

for n → ∞, where > denotes transposition. We will prove that each component of this
random vector either converges in distribution to a normally distributed random variable
or to a degenerate random variable. Here, a random variable is said to be degenerate if it
is constant with probability 1. By definition, a degenerate random variable is independent
of any other random variable. Thus, the variance of a degenerate random variable and the
covariance of a degenerate and any other random variable are always 0.

For a finally connected, aperiodic transducer, the expected value and the variance of Ωn

will turn out to be (e1, e2)>n + O(1), (v1, v2)>n + O(1), respectively, for suitable constants
e1, e2, v1 and v2 (see Theorem 3.3). The covariance between the two coordinates will be
cn + O(1) for some constant c. We call Σ =

(v1 c
c v2

)
the asymptotic variance-covariance

matrix of Ωn = (Input(Xn),Output(Xn))>. Its entries are called the asymptotic variances
and the asymptotic covariance.

For transducers with output alphabet {0, 1}, the characterization of vanishing asympototic
variance v2 turns out to be particularly simple: All transitions of the final component have
to have the same output (see Corollary 3.3.4). This output alphabet occurs naturally when
only the Hamming weight (the number of non-zero elements) of an expansion is of interest.

For brevity, we introduce the notion of independent transducers.

Definition 3.2.4. A transducer is independent if the random vector Ωn converges in dis-
tribution to a random vector with two independent components, i.e., the sum of the input
Input(Xn) and the sum of the output Output(Xn) are asymptotically independent random
variables.

Example 3.2.5. In [61], Heuberger and Prodinger prove that the Hamming weight of the
standard binary expansion and the Hamming weight of the non-adjacent form are asymptoti-
cally independent. The non-adjacent form is the unique digit expansion with digits {−1, 0, 1},

54 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

0 0 1

1 | 1 1 | 0
0 | 0

0 | 1

1 | 0

0 | 0

Figure 3.2. Transducer to compute the Hamming weight of the non-adjacent
form.

base 2 and the syntactical rule that at least one of any two adjacent digits has to be 0. It has
minimal Hamming weight among all digit expansions with digits {−1, 0, 1} in base 2.

The transducer in Figure 3.2 computes the Hamming weight of the non-adjacent form
when reading the binary expansion from right to left. The transducer is a slight simplification
of the one in, e.g., [61], taking into account that we are only interested in the Hamming weight.
Thus, the transducer in Figure 3.2 is an example of an independent transducer by the results
in [61].

3.3. Main Results

In this section, we state the main theorems and corollaries describing independent trans-
ducers and transducers with bounded variance. First, we investigate transducers with bounded
variance. Then, we give an algebraic description and a combinatorial characterization of in-
dependent transducers. All proofs can be found in Section 3.5.

3.3.1. Bounded Variance and Singular Asymptotic Variance-Covariance Ma-
trix. We give a combinatorial characterization of transducers whose output sum has as-
ymptotic variance 0. We also give a combinatorial description of transducers with singular
asymptotic variance-covariance matrix. These characterizations are given in terms of cycles
and closed walks of directed graphs.

As usual, a cycle is a strongly connected digraph such that every vertex has out-degree 1.
A closed walk is an alternating sequence of vertices and edges (s1, e1, s2, . . . , sn+1 = s1) such
that ej is an edge from sj to sj+1.

For a function g and a walk C of the underlying graph of the transducer, we define

g(C) =
∑
e∈C

g(e)

taking multiplicities into account. Here, the function g is either the constant function 1(e) =
1, the input ε(e) or the output δ(e) of the transition e.

Theorem 3.1 ([102]). For a subsequential, complete, finally connected and finally aperiodic
transducer with an arbitrary finite input alphabet AI , the following assertions are equivalent:

(a) The asymptotic variance v2 of the output sum is 0.
(b) There exists a state s of the final component and a constant k ∈ R such that

δ(C) = k1(C)
holds for every closed walk C of the final component visiting the state s exactly once.

(c) There exists a constant k ∈ R such that
δ(C) = k1(C)

3.3. MAIN RESULTS 55

holds for every directed cycle C of the final component of the transducer T .
In that case, kn + O(1) is the expected value of the output sum and Statement (b) holds for
all states s of the final component.

We want to emphasize that only cycles and closed walks of the final component are
considered in this theorem (see also Remark 3.3.7). The proofs can be found in Section 3.5.3.

In the case of a strongly connected transducer, the equivalent conditions of Theorem 3.1
will be shown to be equivalent to another condition which, at first glance, seems to be even
stronger.

Definition 3.3.1. The output sum of a transducer is called quasi-deterministic if there is a
constant k ∈ R such that

Output(Xn) = kn+O(1)
holds for all n and all inputs.

We now characterize quasi-deterministic output sums. In weakly connected graphs, it
turns out that being “quasi-deterministic” is a stronger notion than the conditions in Theo-
rem 3.1.

Theorem 3.2. Let T be a subsequential, complete transducer whose underlying graph is
weakly connected. Then the following two assertions are equivalent:

(d) There exists a constant k ∈ R such that the random variable Output(Xn) is quasi-
deterministic with value kn+O(1).

(e) There exists a constant k ∈ R such that

δ(C) = k1(C)

holds for every directed cycle C of the transducer.

This result and the following corollaries are proved in Section 3.5.3. By comparing state-
ments (c) of Theorem 3.1 and (e) of Theorem 3.2, it is obvious that in strongly connected
transducers, all these statements are actually equivalent.

Corollary 3.3.2. Let T be a subsequential, complete, strongly connected, aperiodic trans-
ducer. Then the asymptotic variance v2 of the output sum is zero if and only if the output
sum is a quasi-deterministic random variable.

Remark 3.3.3. If the transducer is not strongly connected (so that there are states that
do not belong to the final component), the output sum can have bounded variance without
being quasi-deterministic. A simple example is a transducer that counts the number of 1s in
a binary string before the first 0. In such a case, however, the transducer formed only by the
final component still needs to have quasi-deterministic output sum.

When considering the special case of the Hamming weight, bounded variance only occurs
in trivial cases:

Corollary 3.3.4. For AO = {0, 1}, the only output weights of the final component with
asymptotic variance v2 = 0 are (0, . . . , 0) and (1, . . . , 1).

The following corollary of Theorem 3.1 gives a combinatorial characterization of trans-
ducers whose asymptotic variance-covariance matrix is singular.

56 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

Corollary 3.3.5 ([46, 102]). Let T be a complete, subsequential, finally connected, finally
aperiodic transducer whose input alphabet has at least size 2. Then the asymptotic variance-
covariance matrix Σ has rank 1 if and only if there exist a, b ∈ R with
(3.1) δ(C) = a1(C) + bε(C)
for all cycles C of the final component.

In that case, the constants are a = − c
v1
e1 + e2 and b = c

v1
.

Furthermore, the random variables Input(Xn) and Output(Xn) are asymptotically perfectly
positively or negatively correlated (i.e., they have asymptotic correlation coefficient ±1) if and
only if (3.1) holds with b 6= 0.

3.3.2. Algebraic Description of Independent Transducers. For giving an algebraic
description of independent transducers, we define transition matrices of the transducer.

Definition 3.3.6. For ε ∈ AI , let a transition matrix Mε(y) of the final component be the
N × N -matrix whose entry (s, t) is yδ if there is a transition from state s to state t in the
final component with input ε and output δ, and 0 otherwise.

Similarly, let Wε be the transition matrix of the whole transducer. The ordering of the
states is considered to be fixed in such a way that the initial state 1 is the first state and Wε

has the block structure

(3.2)
(
∗ ∗
0 Mε

)
where ∗ are matrices with arbitrary entries. If the transducer is strongly connected, the
matrices ∗ are not present (they have 0 rows).

Theorem 3.3. Let T be a complete, subsequential, finally connected, finally aperiodic trans-
ducer, and let the transition matrices of the final component be Mε(y) for ε ∈ AI . Set

f(x, y, z) = det
(
I − z

|AI |
∑
ε∈AI

xεMε(y)
)
.

Then the random variables Input(Xn) and Output(Xn) have the expected values, variances
and covariance

(3.3)

E(Input(Xn)) = e1n,

E(Output(Xn)) = e2n+O(1),
V(Input(Xn)) = v1n,

V(Output(Xn)) = v2n+O(1),
Cov(Input(Xn),Output(Xn)) = cn+O(1)

with

e1 = fx
fz

∣∣∣
1
,

e2 = fy
fz

∣∣∣
1
,

v1 = 1
f3
z

(f2
x(fzz + fz) + f2

z (fxx + fx)− 2fxfzfxz)
∣∣∣
1
,

v2 = 1
f3
z

(f2
y (fzz + fz) + f2

z (fyy + fy)− 2fyfzfyz)
∣∣∣
1
,

3.3. MAIN RESULTS 57

c = 1
f3
z

(fxfy(fzz + fz) + f2
z fxy − fyfzfxz − fxfzfyz)

∣∣∣
1

where 1 = (1, 1, 1)> and fz(1) 6= 0.
The constants e1 and v1 can also be expressed as

e1 = 1
|AI |

∑
ε∈AI

ε, v1 = 1
|AI |

∑
ε∈AI

ε2 −
(1
|AI |

∑
ε∈AI

ε
)2
.(3.4)

The random vector Ωn is asymptotically jointly normally distributed if and only if the
asymptotic variance-covariance matrix Σ is regular.

The transducer T is independent if and only if
(fxfy(fzz + fz) + f2

z fxy − fyfzfxz − fxfzfyz)
∣∣
1 = 0(3.5)

or, equivalently,
(3.6) (e1fy(fzz + fz) + fzfxy − fyfxz − e1fzfyz)

∣∣
1 = 0.

The proof of this theorem is in Section 3.5.1. This result has been implemented as the
method

FiniteStateMachine.asymptotic_moments()
in the mathematics software system SageMath, cf. [51], using the finite state machines package
described in [49] and Chapter 6.

Remark 3.3.7. Neither the final output nor the non-final components influence the asymp-
totic result because it only depends on f(x, y, z) and thus on the transitions of the final
component.

Now we consider the following “inverse” problem: Given the underlying graph and the
input digits of the transducer; how can we choose the output labels such that the transducer
is independent?

Let (a1, . . . , aN) be the output labels of the final component of the transducer. We say,
as usual, that a linear equation is homogeneous if the zero vector is a solution. Then (3.5)
is a linear, homogeneous equation in a1, . . . , aN with real coefficients. The equation is linear
because the variables ai only occur linearly in the exponents of y and there are only first
derivatives with respect to y in the covariance condition (3.5). Furthermore, (3.5) is homo-
geneous because all derivatives with respect to y (and maybe other additional variables) at
(x, y, z)> = 1 are homogeneous. A solution of this linear, homogeneous equation corresponds
to an independent transducer.

Let us first consider the situation where all outputs are equal to 1. Then, the determinant
f(x, y, z) consists of monomials xaybzb with a ∈ R and b ∈ Z. Therefore, we obtain

fy|1 = fz|1,
fxy|1 = fxz|1,
fyz|1 = fzz + fz|1,

and it follows that (3.5) and (3.6) are satisfied. This means that a constant output (k, . . . , k)
for k ∈ AO is always a trivial solution to these equations because (3.5) is homogeneous.

But for these trivial solutions, the sum of the output is an asymptotically degenerate
random variable. Hence, we are not really interested in the independent transducers given by
these solutions.

58 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

1 | a3

0 | a4

0 | a11 | a2

Figure 3.3. Transducer of Example 3.3.8.

Example 3.3.8. In Figure 3.3, we have a transducer with variable output weights a1, a2, a3
and a4. We do not give the final output labels as they do not influence the asymptotic result.
In this example, (3.5) simplifies to

−a1 + a2 = 0.

3.3.3. Combinatorial Characterization of Independent Transducers. We con-
nect the derivatives of f(x, y, z) with a weighted sum of subgraphs of the underlying graph.
Thus, in Theorem 3.4, we can give a combinatorial description of (3.5).

Definition 3.3.9. We define the following types of directed graphs as subgraphs of the final
component of the transducer.

• A rooted tree is a weakly connected digraph with one vertex which has out-degree 0,
while all other vertices have out-degree 1. The vertex with out-degree 0 is called the
root of the tree.
• A functional digraph is a digraph whose vertices have out-degree 1. Each component
of a functional digraph consists of a directed cycle and some trees rooted at vertices
of the cycle. For a functional digraph D, let CD be the set of all cycles of D.

Definition 3.3.10. Let D1 and D2 be the sets of all spanning subgraphs of the final compo-
nent of the transducer T which are functional digraphs and have one and two components,
respectively.

For functions g and h : E → R, we define

g(D1) =
∑
D∈D1

∑
C∈CD

g(C),

gh(D1) =
∑
D∈D1

∑
C∈CD

g(C)h(C),

gh(D2) =
∑
D∈D2

∑
C1∈CD

∑
C2∈CD
C2 6=C1

g(C1)h(C2).

With these definitions, we give a combinatorial characterization of independent transduc-
ers.

Theorem 3.4. Let T be a complete, subsequential, finally connected, finally aperiodic trans-
ducer.

Then the random variables Input(Xn) and Output(Xn) have the expected values given by
(3.3), where the constants are

e1 = ε(D1)
1(D1) ,

3.3. MAIN RESULTS 59

e2 = δ(D1)
1(D1) .

The variances and the covariance are given by (3.3), with the constants

v1 = 1
1(D1)

(
(ε− e11)(ε− e11)(D1)− (ε− e11)(ε− e11)(D2)

)
,

v2 = 1
1(D1)

(
(δ − e21)(δ − e21)(D1)− (δ − e21)(δ − e21)(D2)

)
,

c = 1
1(D1)

(
(ε− e11)(δ − e21)(D1)− (ε− e11)(δ − e21)(D2)

)
.

The transducer T is independent if and only if

(ε− e11)(δ − e21)(D1) = (ε− e11)(δ − e21)(D2)(3.7)

We emphasize that, by Definition 3.3.10, only edges in the final component of the trans-
ducer are considered in Theorem 3.4. The non-final components do not influence the as-
ymptotic main terms (see also Remark 3.3.7). The proof of this theorem can be found in
Section 3.5.2.

In the following corollary, we consider the case of a normalized input and output, i.e., the
constants of the expected values satisfy e1 = e2 = 0. This can be obtained by subtracting the
original constants e1 and e2 from every input label and output label, respectively. Then the
corollary follows directly from Theorem 3.4.

Corollary 3.3.11. Suppose that E(Input(Xn)) and E(Output(Xn)) are both bounded. Then
the transducer T is independent if and only if

εδ(D2) = εδ(D1).

Example 3.3.12. We again consider the transducer of Example 3.3.8 in Figure 3.3. The
set D1 consists of 3 functional digraphs and D2 consists of only one functional digraph (see
Figure 3.4). By (3.7), we obtain the same equation as before, namely

a1 − a2 = 0,

as condition for the transducer to be independent.
Also by Theorem 3.4, the expected value of the output sum is

a1 + a2 + a3 + a4
4 n+O(1)

and the asymptotic variance is

5a2
1 − 6a1a2 + 5a2

2 − 2a1a3 − 2a2a3 + a2
3 − 2a1a4 − 2a2a4 + 2a3a4 + a2

4
16 .

The covariance between the input sum and the output sum is

−a1 − a2
4 n+O(1).

60 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

1 | a3

1 | a2

1 | a3

0 | a4 0 | a4

0 | a1

(1) D1

0 | a11 | a2

(2) D2

Figure 3.4. Functional digraphs of the transducer of Example 3.3.12.

1

0

2

0

w + 1

1

w
0

1 | 1

0 | 0
1 | 0

0 | 0

0 | 1

1 | 0

0
| 0

1
| 0

Figure 3.5. Transducer to compute the Hamming weight of the width-w
non-adjacent form.

3.4. Examples of Transducers

In this section we give various examples to illustrate our theorems: these include both
dependent and independent transducers and transducers with both bounded and unbounded
variance of the output sum. These examples are also shown in the documentation of the
method FiniteStateMachine.asymptotic_moments() [51] in SageMath. Especially, exam-
ple 3.4.6 demonstrates how the combinatorial characterization of transducers with bounded
variance can be used in cases where we only have limited information about the transducer.

Example 3.4.1 (Width-w non-adjacent form). The width-w non-adjacent form (cf. [5, 78])
is a digit expansion with base 2, digits {0,±1,±3, . . . ,±(2w−1 − 1)} and the syntactical rule

3.4. EXAMPLES OF TRANSDUCERS 61

1

2 0

3 1

0 |
−

1
|1

0
|1

0 | 0

1 | 0

1 | −

Figure 3.6. Transducer to compute the Gray code.

that at most one of any w consecutive digits is non-zero. The transducer in Figure 3.5
computes the Hamming weight of the width-w non-adjacent form when reading the standard
binary expansion (cf. [50]). For w = 2, this transducer is the same as that in Figure 3.2.
The variance of the output is not 0 (Corollary 3.3.4). With Theorem 3.3 or 3.4, we obtain
that this transducer is independent for every w. Thus, the Hamming weight of the width-w
non-adjacent form and the standard binary expansion are asymptotically independent.

Remark 3.4.2. Example 3.4.1 not only shows that there are infinitely many independent
transducers, but also gives the construction of one such infinite family of independent trans-
ducers.

Example 3.4.3 (Gray code). The Gray code is an encoding of the positive integers such that
the Gray code of n and the Gray code of n + 1 differ only at one position. The transducer
in Figure 3.6 computes the Gray code of an integer. The output label of the initial state
is 0 and, as it does not influence the result, it is not given in the figure. The transducer
is finally connected and finally aperiodic. The final component consisting of states 2 and 3
is independent (see Example 3.3.8). Thus, the Hamming weight of the Gray code and the
standard binary expansion are asymptotically independent.

Example 3.4.4 (Length 2 blocks in the standard binary expansion). We count the number
of patterns of length 2 occurring in the standard binary expansion and compare it to the
Hamming weight. By symmetry, it is obviously sufficient to consider the two patterns 01 and
11. The transducers in Figure 3.7 determine the number of 01- and 11-blocks, respectively.
The variance of the output weight is not 0 in either case (Corollary 3.3.4), in fact the constant
v2 is 1

16 (for 01-blocks) and 5
16 respectively.

By Theorem 3.3 or 3.4, we also find that the transducer for 01-blocks is independent, while
the transducer for 11-blocks (unsurprisingly) is not: the number of 11-blocks asymptotically
depends on the number of 1’s in the standard binary expansion, and the correlation coefficient
is 2√

5 ≈ 0.894.

62 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

0 | 1
0 | 0

1 | 0

1 | 0

(1) 01-blocks

0 | 0
0 | 0

1 | 0

1 | 1

(2) 11-blocks

Figure 3.7. Transducers to compute the number of 01- and 11-blocks in the
standard binary expansion.

0
|−

1

1 | 0

0 |
0

0 | 0

1 | 0
1
|1

Figure 3.8. Transducer to compute the number of 10-blocks minus the num-
ber of 01-blocks in the standard binary expansion.

Example 3.4.5. Now, we give an example of a transducer with bounded variance of the
output sum. We compute the number of 10-blocks minus the number of 01-blocks in the
standard binary digit expansion. In Figure 3.8, we show the corresponding transducer. The
output label of the initial state is 0 and, as it does not influence the result, it is not given in
the figure. Any of the three cycles has output sum 0. Thus, the asymptotic variance of this
random variable is 0. There is, of course, an intuitive explanation: when we read a 1 after
a 0 (reading from right to left), the count increases by 1; when we read a 0 after a 1, the
count decreases by 1; otherwise, it remains unchanged. Thus the final output value will only
depend on the first and last digit.

Example 3.4.6. Finally, we consider the minimal Hamming weight of τ -adic digit expansions
for a given algebraic integer τ and a given digit set D. For z ∈ Z[τ], a τ -adic expansion
(dL . . . d0)τ of z with digit set D ⊂ Z[τ] satisfies di ∈ D and

z =
L∑
i=0

diτ
i.

This can be extended to d-dimensional joint expansions of vectors z ∈ Z[τ]d with digit set
D ⊂ Z[τ]d.

3.5. PROOFS OF THE THEOREMS 63

In [42], a transducer to compute the minimal Hamming weight is constructed. Note that
the output alphabet of the transducer need not be {0, 1} even if we are interested in the
Hamming weight. The next theorem is an extension of Theorem 4 in [42].

Theorem 3.5. Assume that D ⊂ Z[τ]d, for a positive integer d, and D ∩ τZd = {0}. Let
mw(z) be the minimal Hamming weight of a τ -adic joint digit representation of z with digits
in D. Assume further that the digit set D satisfies

∀c ∈ Z[τ]d ∃U ∈ R ∀z ∈ Z[τ]d : |mw(z + c)−mw(z)| ≤ U.

Consider the random variable Rn = mw(Dn), where Dn is a random τ -adic joint digit rep-
resentation of length n with digits in AI ⊂ Z[τ]d. We assume that (τ,AI) is an irredundant
digit system with 0 ∈ AI . The digits of Dn are independent and identically distributed with
uniform distribution on AI .

Then there exist constants E, V , with V 6= 0, such that

ERn = En+O(1),
VRn = V n+O(1)

and
Rn − En√

V n

is asymptotically normally distributed.

Proof. In [42], the authors give a strongly connected and aperiodic transducer computing
mw(z) if the input is the τ -adic representation of z with digit set AI read from left to right.
Everything follows from Theorem 4 in [42] if V 6= 0.

To prove V 6= 0, we use Theorem 3.1, (b). In [42], the authors state that the transducer
has a loop at the initial state 1 with input and output digit 0. Thus, in Theorem 3.1, (b), the
value of k is 0.

On the other hand, there exists a z ∈ Z[τ]d with mw(z) 6= 0. The input z leads to a
state s. From each state the input 0l, for some l, leads again to the initial state 1. Thus, the
unique path whose input labels are given by the digit representation of zτ l is a closed walk
visiting 1 at least once. The output sum of this closed walk is mw(zτ l) = mw(z) 6= 0. Thus,
there exists a closed walk whose output sum is not 0, which contradicts Theorem 3.1, (b)
with k = 0. Therefore, we obtain V 6= 0. �

3.5. Proofs of the Theorems

In this section, we give the proofs of the theorems and corollaries of Section 3.3. We first
prove the algebraic description and the combinatorial characterization in Sections 3.3.2 and
3.3.3. Later we prove the statements in Section 3.3.1 about the bounded variance.

3.5.1. Algebraic Description of Independent Transducers. First, we prove a slight
extension of the 2-dimensional Quasi-Power Theorem [44] (a generalization of [66]). This
extension will also take into account the case of a singular Hessian matrix.

We write boldface letters for a vector s = (s1, s2)>. Furthermore, we use the notation
es = (es1 , es2). We denote by 1 a 2- or 3-dimensional vector of ones, depending on the context.
By ‖ · ‖, we denote the maximum norm ‖s‖ = max(|s1|, |s2|).

64 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

Theorem 3.6. Let (Ωn)n≥1 be a sequence of 2-dimensional real random vectors. Suppose
that the moment generating function satisfies

E(e〈Ωn,s〉) = eu(s)Φ(n)+v(s)(1 +O(κ−1
n)
)
,

the O-term being uniform for ‖s‖ ≤ τ , s ∈ C2, τ > 0, where
(1) u(s) and v(s) are analytic for ‖s‖ ≤ τ and independent of n;
(2) limn→∞Φ(n) =∞;
(3) limn→∞ κn =∞.
Then,

(3.8)
E(Ωn) = Φ(n) gradu(0) + grad v(0) +O(κ−1

n),
V(Ωn) = Φ(n)Hu(0) +Hv(0) +O(κ−1

n),

where Hu(s) is the Hessian matrix of u. Let Σ be the matrix Hu(0).
If Hu(0) is regular, then the standardized random vector

Ω∗n = Ωn − Φ(n) gradu(0)√
Φ(n)

is asymptotically jointly normally distributed with variance-covariance matrix Σ.
If Hu(0) has rank 1, then the limit distribution of Ω∗n is the direct product of a normal

distribution and a degenerate distribution (if one of the variances is O(1)) or a linear trans-
formation thereof. In the first case, the coordinates of Ω∗n are asymptotically independent. In
the second case, we have an asymptotically linear relationship between the two coordinates.

If Hu(0) has rank 0, then the limit distribution of Ω∗n is degenerate.

Proof. The expressions (3.8) for expectation and variance-covariance matrix follow from
the moment generating function by differentiation.

The case of a regular Hessian matrix Hu(0) is exactly the statement of the 2-dimensional
Quasi-Power Theorem [44].

For the case of a singular Hessian matrix, we follow the proof of the Quasi-Power Theo-
rem [44]. We consider the characteristic function

fn(s) = exp
(
− 1

2s
>Hu(0)s+O

(‖s‖3 + ‖s‖√
Φ(n)

))(
1 +O(κ−1

n)
)

of the standardized random vector Ω∗n. Thus the characteristic function tends to

f(s) = exp
(
− 1

2s
>Hu(0)s

)
.

If the Hessian matrix Hu(0) has rank 0, then f(s) equals the identity function. Thus, the
distribution function is degenerate.

If the Hessian matrix Hu(0) has rank 1 and the variance of the second coordinate Ωn,2 is
O(1), then Hu(0) =

(
v1 0
0 0
)
for a v1 ∈ R. Thus,

f(s) = exp
(
− 1

2v
2
1s

2
1

)
· 1

which is the characteristic function of the normal distribution with mean 0 and variance v1
times the characteristic function of the point mass at 0.

If the Hessian matrix Hu(0) =
(v1 c
c v2

)
has rank 1 with v1v2 6= 0, then we consider the

random variables X = Ωn,1, the first coordinate of Ωn, and Z = − c
v1

Ωn,1 + Ωn,2. Then, the

3.5. PROOFS OF THE THEOREMS 65

main term of the variance-covariance matrix of (X,Z)> is
(
v1 0
0 0
)
Φ(n). Thus, X is asymptoti-

cally normally distributed and Z is an asymptotically constant random variable (see previous
case). �

Using this version of the Quasi-Power Theorem, we prove the algebraic description of
independent transducers given in Theorem 3.3.

Proof of Theorem 3.3. Let K be the size of the input alphabet AI . Let akln be the
number of sequences of length n with input sum k such that the corresponding output of the
transducer T has sum l. We define

A(x, y, z) =
∑
k∈R

∑
l∈R

∞∑
n=0

aklnK
−nxkylzn.

Thus, the variable x marks the input sum, y marks the output sum, and z marks the length
of the input. Then [zn]A(x, y, z) is the probability generating function of Ωn, where [zn]b(z)
is the coefficient of zn in the power series b(z).

Due to the block structure of Wε(y) in (3.2), we have

(3.9)

A(x, y, z) = u>
(
I − z

K

∑
ε∈AI

xεWε(y)
)−1

v

= F1(x, y, z)
det

(
I − z

K

∑
ε∈AI x

εWε(y)
)

= F1(x, y, z)
F2(x, y, z) det

(
I − z

K

∑
ε∈AI x

εMε(y)
) ,

with u> = (1, 0, . . . , 0) for the initial state, vs = ya(s) for the final output label at state s
and F1(x, y, z) and F2(x, y, z) “polynomials” in x, y and z. We use quotation marks because
exponents of x and y might not be integers. However, only finitely many summands occur.
The function F2(x, y, z) is the determinant corresponding to the non-final components in the
upper left corner in (3.2).

The moment generating function of Ωn is

E(e〈Ωn,s〉) = [zn]A(es1 , es2 , z).

For extracting the coefficient, we investigate the dominant singularity of A(x, y, z). Since
the final component is strongly connected and aperiodic, we have a unique dominant simple
eigenvalue of

∑
ε∈AI x

εMε(y) at (x, y)> = 1 by the theorem of Perron–Frobenius (cf. [33]).
Because the final component is complete, this dominant eigenvalue is K, that is the size of
the input alphabet AI . Thus, the unique dominant singularity of f(x, y, z)−1 = det

(
I −

z
|AI |

∑
ε∈AI x

εMε(y)
)−1 at (x, y)> = 1 is a simple pole at ρ(1) = 1. Therefore, we have

fz(1) 6= 0.
For (x, y)> in a small neighborhood of 1, there is a unique dominant singularity ρ(x, y)

of f(x, y, z)−1 due to the continuity of eigenvalues.
Next, we consider the non-final components of the transducer. The corresponding trans-

ducer T0 is not complete. Let T +
0 be the complete transducer that is obtained from T0 by

adding loops where necessary. The dominant eigenvalue of T +
0 is K. As the corresponding

sums of transition matrices of T0 and T +
0 satisfy element-wise inequalities but are not equal

(at (x, y)> = 1), the theorem of Perron–Frobenius (cf. [33, Theorem 8.8.1]) implies that the

66 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

dominant eigenvalues of T0 have absolute value less than K. Thus, the dominant singularities
of F2(1, 1, z)−1 are at |z| > 1. By continuity, this also holds for a small neighborhood of
(x, y)> = 1.

As A(1, 1, z) = (1 − z)−1, we obtain F1(1) 6= 0 and F1(x, y, ρ(x, y)) 6= 0 for (x, y)> in
a small neighborhood of 1. Therefore, ρ(x, y) is the simple dominant pole of A(x, y, z) in a
small neighborhood of 1.

The Laurent series of A(x, y, z) at z = ρ(x, y) is

A(x, y, z) = (z − ρ(x, y))−1C(x, y) + power series in (z − ρ(x, y))

for a function C(x, y) which is analytic in a neighborhood of 1 with C(1) 6= 0. Thus, by
singularity analysis [30], we have

E(e〈Ωn,s〉) = [zn]A(es1 , es2 , z) = eu(s)n+v(s)(1 +O(κn)
)

with

u(s) = − log ρ(es),
v(s) = log(−C(es)ρ(es)−1)

and κ < 1.
Theorem 3.6 yields the expected value, the variance-covariance matrix and the asymptotic

normality of Ωn. By implicit differentiation, we obtain the stated expressions. The error terms
for the input sum are 0 because the input letters are independent and identically distributed.
This also yields the explicit constants in (3.4).

Since the input alphabet AI has at least two elements, the input sum has non-zero as-
ymptotic variance. Thus, the asymptotic variance-covariance matrix Σ can have rank 1 or 2.
Now, we consider these two cases separately and prove the asserted equivalence.

(1) Let Σ have rank 1. Then Ωn converges to a degenerate and a normally distributed
random variable if the asymptotic variance of the output sum is 0; or a linear trans-
formation thereof otherwise. Thus, Ωn is asymptotically independent if and only if
the asymptotic variance of the sum of the output is 0. As the rank of Σ is 1, the
asymptotic variance is 0 if and only if the asymptotic covariance is 0.

(2) Let Σ be invertible. By Theorem 3.6, we obtain an asymptotic joint normal distribu-
tion. Thus, Ωn is asymptotically independent if and only if its asymptotic covariance
is 0.

�

3.5.2. Combinatorial Characterization of Independent Transducers. To obtain
the combinatorial characterization, we use a version of the Matrix-Tree Theorem as proved
by Chaiken [16] and Moon [75]. This version does not use trees, but forests, i.e., digraphs
whose weak components are trees.

Definition 3.5.1. Let A, B ⊆ {1, . . . , N}. Let FA,B be the set of all forests which are
spanning subgraphs of the final component of the transducer T with |A| trees such that every
tree is rooted at some vertex a ∈ A and contains exactly one vertex b ∈ B.

Let A = {i1, . . . , in} and B = {j1, . . . , jn} with i1 < · · · < in and j1 < · · · < jn. For
F ∈ FA,B, we define a function g : B → A by g(j) = i if j is in the tree of F which is rooted
in vertex i. We further define the function h : A → B by h(ik) = jk for k = 1, . . . , n. The
composition g ◦ h : A→ A is a permutation of A. We define sgnF = sgn g ◦ h.

3.5. PROOFS OF THE THEOREMS 67

If |A| 6= |B|, then FA,B = ∅. If |A| = |B| = 1, then sgnF = 1 and FA,B consists of all
spanning trees rooted in a ∈ A.

Theorem (All-Minors-Matrix-Tree Theorem [16, 75]). For a directed graph with loops, let
L = (lij)1≤i,j≤N be the Laplacian matrix, that is

∑N
j=1 lij = 0 for every i = 1, . . . , N and −lij

is the number of edges from i to j for i 6= j. Then, for |A| = |B|, the minor detLA,B satisfies

detLA,B = (−1)
∑

i∈A i+
∑

j∈B j
∑

F∈FA,B

sgnF

where LA,B is the matrix L whose rows with index in A and columns with index in B are
deleted.

The All-Minors-Matrix-Tree Theorem is still valid for |A| 6= |B| if we assume that the
determinant of a non-square matrix is 0. For notational simplicity, we use this convention in
the rest of this section.

The next lemma connects the derivatives of f(x, y, z) with weighted sums of functional
digraphs. Theorem 3.4 follows immediately from this lemma and Theorem 3.3.

Lemma 3.5.2. Let K be the size of the input alphabet AI . For f(x, y, z) = det
(
I −

z
|AI |

∑
ε∈AI x

εMε(y)
)
, we have

fx(1, 1, 1) = −K−Nε(D1), fxy(1, 1, 1) = K−N (εδ(D2)− εδ(D1)),
fy(1, 1, 1) = −K−Nδ(D1), fxz(1, 1, 1) = K−N (ε1(D2)− ε1(D1)),
fz(1, 1, 1) = −K−N1(D1), fyz(1, 1, 1) = K−N (δ1(D2)− δ1(D1)),

fxx(1, 1, 1) + fx(1, 1, 1) = K−N (εε(D2)− εε(D1)),
fyy(1, 1, 1) + fy(1, 1, 1) = K−N (δδ(D2)− δδ(D1)),
fzz(1, 1, 1) + fz(1, 1, 1) = K−N (11(D2)− 11(D1)).

Proof. The idea of the proof is as follows: First, we compute the derivatives and write
them as sums over all states. Using the All-Minors-Matrix-Tree Theorem, we change the
summation to a sum over forests. In the next step, we again change to a sum over functional
digraphs.

Let u1, u2 be any of the variables x, y or z. For a matrix M = (mij)1≤i,j≤N , we define
the matrix Mk:u1 = (m̂ij)1≤i,j≤N with m̂ij = mij for i 6= k and m̂kj = ∂

∂u1
mkj . Thus Mk:u1 is

the matrix M where row k is differentiated with respect to u1.
We further define the derivatives at 1 as

Du1(·) = ∂

∂u1
(·)
∣∣∣
1

and

Du1u2(·) = ∂2

∂u1∂u2
(·)
∣∣∣
1
.

Applying the product rule to the definition of the determinants gives us

Du1(f) =
N∑
j=1

det
(
I − z

K

∑
ε∈AI

xεMε(y)
)
j:u1

∣∣∣
1
,

68 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

Du1u2(f) =
N∑
i=1

N∑
j=1

det
(
I − z

K

∑
ε∈AI

xεMε(y)
)
i:u1, j:u2

∣∣∣
1
.

In these equations, we have a sum over all states.
Since our original matrix I− z

K

∑
ε∈AI x

εMε(y) is sparse, and (I− z
K

∑
ε∈AI x

εMε(y))j:u1 is
even sparser, we use Laplace expansion along row j to determine these determinants. If i 6= j,
we use Laplace expansion along rows i and j to determine det(I − z

K

∑
ε∈AI x

εMε(y))i:u1, j:u2
for the second derivatives. If i = j, we only expand along row j. Depending on the variable
of differentiation, there are at most K non-zero values in row j after differentiation.

For a transition e, we denote by t(e), h(e), ε(e) and δ(e) the tail, the head, the input and
the output of the transition e, respectively. Furthermore, let we = 1

Kx
ε(e)yδ(e)z be the weight

of the transition e.
If we use Laplace expansion along two different rows, we must be careful with the sign.

Therefore, we define
σde = (−1)[t(e)>t(d)]+[h(e)>h(d)]

for two transitions d and e. Here, we use Iverson’s notation, that is [expression] is 1 if
expression is true and 0 otherwise (cf. [41]).

Let L be the Laplacian matrix of the underlying graph, that is

L = KI −
∑
ε∈AI

Mε(1).

Recall the notation LA,B for the matrix where the rows corresponding to A and the
columns corresponding to B have been removed. Laplace expansion yields

Du1(f) = −K−N+1
N∑
j=1

∑
e∈E
t(e)=j

(−1)t(e)+h(e)Du1(we) det(L{t(e)},{h(e)}),

Du1u2(f) = −K−N+1
N∑
j=1

∑
e∈E
t(e)=j

(−1)t(e)+h(e)Du1u2(we) det(L{t(e)},{h(e)})

+K−N+2
N∑
i=1

N∑
j=1
j 6=i

∑
d∈E
t(d)=i

∑
e∈E
t(e)=j

(
(−1)t(d)+h(d)+t(e)+h(e)σde

×Du1(wd)Du2(we) det(L{t(d),t(e)},{h(d),h(e)})
)
.

Next, we use the All-Minors-Matrix-Tree Theorem and change the summation over all
rows to a summation over forests. We obtain

Du1(f) = −K−N+1∑
e∈E

Du1(we)
∑

F∈F{t(e)},{h(e)}

sgnF,

Du1u2(f) = −K−N+1∑
e∈E

Du1u2(we)
∑

F∈F{t(e)},{h(e)}

sgnF

+K−N+2 ∑
d∈E

∑
e∈E
e6=d

(
σdeDu1(wd)Du2(we)

∑
F∈F{t(d),t(e)},{h(d),h(e)}

sgnF
)
.

3.5. PROOFS OF THE THEOREMS 69

Let F ∈ F{t(e)},{h(e)} be a forest for a transition e ∈ E . Then F+e is a spanning functional
digraph with one component. Let F ∈ F{t(d),t(e)},{h(d),h(e)} be a forest for transitions d, e ∈ E .
Then F + d+ e is a spanning functional digraph with one or two components, depending on
σde sgnF . If σde sgnF = 1, then it has two components. Otherwise, it has one component.
Now we can change the summation into a sum over functional digraphs and obtain

Du1(f) = −K−N+1 ∑
D∈D1

∑
C∈CD

∑
e∈C

Du1(we),

Du1u2(f) = −K−N+1 ∑
D∈D1

∑
C∈CD

∑
e∈C

Du1u2(we)

+K−N+2 ∑
D∈D2

∑
C1∈CD

∑
C2∈CD
C2 6=C1

∑
d∈C1

∑
e∈C2

Du1(wd)Du2(we)

−K−N+2 ∑
D∈D1

∑
C∈CD

∑
d∈C

∑
e∈C
e6=d

Du1(wd)Du2(we).

For a transition e, we know the first derivatives

Dx(we) = 1
K
ε(e), Dy(we) = 1

K
δ(e), Dz(we) = 1

K
1(e),

and the second derivatives

Dxy(we) = 1
K
ε(e)δ(e), Dxx(we) = 1

K
ε(e)(ε(e)− 1),

Dxz(we) = 1
K
ε(e)1(e), Dyy(we) = 1

K
δ(e)(δ(e)− 1),

Dyz(we) = 1
K
δ(e)1(e), Dzz(we) = 0.

Thus, we obtain the formulas stated in the lemma. �

3.5.3. Bounded Variance and Singular Asymptotic Variance-Covariance Ma-
trix. We next give the proof of the equivalence of the three statements in Theorem 3.1,
including the bounded variance.

Proof of Theorem 3.1. We first prove (a) ⇔ (b) by giving an alternative representa-
tion of the generating function A(x, y, z) from the proof of Theorem 3.3. Then we prove the
equivalence (b) ⇔ (c).
(a) ⇔ (b): WLOG, we assume that the expected value E(Output(Xn)) is a O(1). Otherwise,

we have E(Output(Xn)) = e2n+O(1) for some constant e2 (see Theorem 3.3). Then
we subtract e2 from the output of every transition, as for Corollary 3.3.11. Under
this assumption, Theorem 3.4 implies that (b) can only hold with k = 0.

As the input sum is inconsequential, we consider A(1, y, z). For brevity, we write
A(y, z) instead. We obtain

A(y, z) = u>
(
I − z

K

∑
ε∈AI

Wε(y)
)−1

v

where Wε for ε ∈ {0, . . . , q − 1} are the transition matrices of T and K = |AI |.

70 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

Since T is complete, finally connected and finally aperiodic, A(1, z) has a simple
dominant pole at z = 1 (see the proof of Theorem 3.3). We know that

(3.10)
E(Output(Xn)) = [zn]Ay(1, z) = O(1),
V(Output(Xn)) = [zn]Ayy(1, z) +O(1).

Let s be any state of the final component. Each path starting at state 1 either
does or does not visit state s. In the first case, this path can be decomposed into
a path leading to state s and visiting s only once, followed by a sequence of closed
walks visiting state s exactly once, and a path starting in s and not returning to s.
We translate this decomposition into an equation for the corresponding generating
functions.

Let Ps be the set of all walks in T which start at state s but never return to
state s. All other states can be visited arbitrarily often. We define the corresponding
generating function P s(y, z) =

∑
P∈Ps y

δ(P)z1(P)K−1(P). Then [zn]P s(y, z) is the
probability generating function of the output sum over walks in Ps of length n.

Let P1s be the set of all walks in T which start at state 1 and lead to state s,
visiting s exactly once. If s = 1, this set consists only of the path of length 0. The
corresponding generating function is called P 1s(y, z).

Let P1 be the set of all walks in T which start at state 1 and never visit state s.
If s = 1, this set is empty. The corresponding generating function is called P 1(y, z).

Let Cs be the set of all closed walks in T which visit state s exactly once. All
other states can be visited arbitrarily often. The corresponding generating function
is called Cs(y, z).

Thus, we have

(3.11) A(y, z) = P 1(y, z) + P 1s(y, z)P s(y, z)
1− Cs(y, z) .

Let α be any of the superscripts 1, 1s or s. By deleting the transitions leading
to s, we have

Pα(y, z) = (uα)>
(
I − z

K

∑
ε∈AI

Wε(y)E
)−1

vα,

where E = diag(1, . . . , 1, 0, 1, . . . , 1) and uα and vα are fixed vectors. The position
of the zero on the diagonal of E corresponds to the state s. The vectors uα and vα
depend on α and may include the output of the transitions leading to s, but E is
independent of α. Since we have the element-wise inequalities

0 ≤
∑
ε∈AI

Wε(1)E ≤
∑
ε∈AI

Wε(1)

and
∑
ε∈AI Wε(1)E 6=

∑
ε∈AI Wε(1), we know that the spectral radii satisfy

ρ
(∑
ε∈AI

Wε(1)E
)
< ρ

(∑
ε∈AI

Wε(1)
)

= K

due to the theorem of Perron–Frobenius (cf. [33, Theorem 8.8.1]). Here, it is impor-
tant that s lies in the final component. Thus, the dominant singularities of Pα(1, z)
are at |z| > 1. Furthermore, we know that P s(1, 1) > 0 and P 1s(1, 1) > 0 by the
definition as generating functions.

3.5. PROOFS OF THE THEOREMS 71

Because z = 1 is a simple pole of A(1, z), no pole of P 1(1, z) and P 1s(1, z)P s(1, z),
and P 1s(1, 1)P s(1, 1) 6= 0, it is a simple root of 1−Cs(1, z) by (3.11). Thus, we can
write 1− Cs(1, z) = (z − 1)g(z) for a suitable function g(z) with g(1) 6= 0.

By (3.10), (3.11) and singularity analysis [30], we obtain
O(1) = E(Output(Xn)) = P 1s(1, 1)P s(1, 1)Csy(1, 1)g(1)−2n+O(1).

Therefore, Csy(1, 1) = 0.
Similarly, we have

V(Output(Xn)) = P 1s(1, 1)P s(1, 1)Csyy(1, 1)g(1)−2n+O(1),(3.12)
taking into account that Csy(1, 1) = 0.

By (3.12), V(Output(Xn)) = O(1) is equivalent to Csyy(1, 1) = 0, and thus,
Csyy(1, 1) + Csy(1, 1) = 0 as Csy(1, 1) = 0. By the definition of Cs(y, z), this is
equivalent to ∑

C∈Cs
δ(C)2K−1(C) = 0,

and thus δ(C) = 0 for all C ∈ Cs.
(b) ⇒ (c): Let Cs be the set of all closed walks in the final component of T which visit state

s exactly once. If D is any cycle of the final component of the transducer, then one
of the following occurs.
• No visits of state s: Let i be a vertex of D. Because the final component is
strongly connected, there exists a closed walk C ∈ Cs with s, i ∈ C. Let D′ be
the combined closed walk of D and C. Then, D′ ∈ Cs, and so we have

δ(D) = δ(D′)− δ(C) = k1(D′)− k1(C) = k1(D).
• One visit of state s: Then we have D ∈ Cs and δ(D) = k1(D).

(c) ⇒ (b): As a closed walk visiting s exactly once can be decomposed into cycles, this is
obvious.

�

Next, we prove the equivalence for the quasi-deterministic output sum.

Proof of Theorem 3.2.
(d) ⇒ (e): Let C be an arbitrary cycle of the transducer and P be a path from the initial

state 1 to any state of the cycle. Let zn be the input sequence along the combined
walk consisting of P and n times C. Then, by quasi-determinism and the definition
of the output, we have

k(1(P) + n1(C)) +O(1) = Output(zn) = δ(P) + nδ(C) +O(1).
Thus, n(δ(C)− k1(C)) is bounded by a constant depending on P and C, but inde-
pendent of n. Therefore, we know that δ(C) = k1(C).

(e) ⇒ (d): WLOG, we assume k = 0 (replace δ(e) by δ(e)−k for all transitions e). For every
z ∈ A∗I , we have |Output(z)| ≤

∑
e∈E |δ(e)| + maxs∈{1,...,S}|a(s)| because all cycles

have output sum 0 so that every transition contributes at most once to Output(z).
Therefore, we have a quasi-deterministic random variable Output(Xn) = O(1).

�

Now, we consider transducers whose output alphabet is {0, 1} and prove that there are
only trivial cases with a bounded variance.

72 3. VARIANCES AND COVARIANCES OF THE OUTPUT OF A TRANSDUCER

Proof of Corollary 3.3.4. We know that the output digits (0, . . . , 0) and (1, . . . , 1)
have asymptotic variance 0.

Assume that the asymptotic variance is 0. Let k be the constant given in Theorem 3.1.
Then, we know k ∈ [0, 1]. By the aperiodicity of the final component, there exist cycles
C1, . . . , Cn of coprime length and therefore integers b1, . . . , bn with

1 = b11(C1) + · · ·+ bn1(Cn).
Thus,

k = b1δ(C1) + · · ·+ bnδ(Cn) ∈ Z
and hence, k ∈ {0, 1}. Therefore, (0, . . . , 0) and (1, . . . , 1) are the only output digits with
asymptotic variance 0. �

This last proof shows the equivalence of the statements in Corollary 3.3.5, including a
transducer with a singular asymptotic variance-covariance matrix.

Proof of Corollary 3.3.5. WLOG, we can assume that both expected values
E(Output(Xn)) = E(Input(Xn)) = O(1).

We know that the asymptotic variance v1 of the input is non-zero because AI consists of
at least two elements. As in the last paragraph of the proof of Theorem 3.6, we consider the
random variables Yn = Input(Xn) and Zn = − c

v1
Input(Xn) + Output(Xn) and their variance-

covariance matrix
(v1 0

0 v2− c
2
v1

)
. The matrix Σ is singular if and only if the asymptotic variance

of Zn is 0.
Thus, we consider a transducer with the same input as the original transducer T for which

the output of a transition e is − c
v1
ε(e) + δ(e). By Theorem 3.1, the output sum of this new

transducer has asymptotic variance 0 if and only if there exists an m ∈ R such that

− c

v1
ε(C) + δ(C) = m1(C)

for every cycle C of the final component. Since the expected value of Zn is O(1), we have
m = 0.

The second statement follows from Theorem 3.1. �

CHAPTER 4

Variance and Covariance of Several Simultaneous Outputs of a
Markov Chain

In this chapter, we give combinatorial characterizations of transducers with several simul-
taneously considered output sums which have a singular variance-covariance matrix and of
output sums of transducers which are asymptotically independent.

This generalizes the results of the previous chapter to more than one output sum and input
sequences which are not necessarily independently identically distributed. This generalization
can be described by using Markov chains. While writing this thesis, this generalization was
considered after [56] has appeared, thus the results are presented separately in two different
chapters.

4.1. Introduction

In this chapter, every transition of a transducer has not only one output, but several
outputs k1, . . . , km. We investigate the random variables K(1)

n , . . . , K(m)
n which are the sums

of the outputs k1, . . . , km, respectively, along a random path of length n in the transducer.
The m different output sums of the transducer turn out to be asymptotically jointly nor-

mally distributed in the case of a non-singular variance-covariance matrix by the Quasi-Power
Theorem [24, Theorem 2.22]. This will be proved to be equivalent to the linear independence
of certain functions of cycles of the underlying graph of the transducer. Furthermore, we give a
combinatorial characterization of transducers with two output sums which are asymptotically
independent.

In contrast to Chapter 3, we allow the input sequence of the transducer to be generated
by a Markov source. This is equivalent to choosing transition probabilities for the transitions
of the transducer. As the input of the transducer is then no longer needed, we define our
setting in terms of a Markov chain with m output functions mapping the transitions of the
Markov chain to real numbers. This allows us to model an input sequence for a transducer
whose letters do not occur with equal probabilities and/or have dependencies between the
letters.

As an example, we prove that the Hamming weight of the width-w non-adjacent form is
asymptotically jointly normally distributed for two different values of w ≥ 2.

The outline of this chapter is as follows: In Section 4.2, we define our setting and the types
of graphs we use to state the combinatorial characterization of independent output sums and
singular variance-covariance matrices. These characterizations are given in Section 4.3 and
examples are given in Section 4.4. In Section 4.5, we finally prove the results of Section 4.3.

4.2. Preliminaries

In this chapter, a finite Markov chain consists of a finite state space {1, . . . ,M}, a finite
set of transitions E between the states, each with a positive transition probability, and a

73

74 4. VARIANCE AND COVARIANCE OF SIMULTANEOUS OUTPUTS OF A MARKOV CHAIN

unique1 initial state 1. We denote the transition probability for a transition e by pe. Then
we have ∑

e∈E
e starts in i

pe = 1

for all states i. Note that for all transitions e ∈ E , we require pe > 0. Further note that there
may be multiple transitions between two states but always only a finite number of them. This
may be useful for different outputs later on.

The transition probabilities induce a probability distribution on the paths of length n
starting in the initial state 1. Let Xn be a random path of length n according to this model.

All states of the underlying digraph of the Markov chain are assumed to be accessible from
the initial state. Contracting each strongly connected component of the underlying digraph
gives an acyclic digraph, the so-called condensation. We assume that this condensation has
only one leaf (i.e., one vertex with out-degree 0). The strongly connected component corre-
sponding to this leaf is called final component. We assume that the period (i.e., the greatest
common divisor of the lengths of all cycles) of this final component is 1. We call such Markov
chains finally connected and finally aperiodic.

Additionally we use several output functions k : E → R. The corresponding random
variable Kn is the sum of all values of k along a random path Xn. We call Kn the output
sum of the Markov chain with respect to k. We use several output function k1, . . . , km and
the corresponding random variables K(1)

n , . . . , K(m)
n simultaneously for one Markov chain.

Remark 4.2.1. Usually, one is interested in a function evaluated at the sequence of random
states of the Markov chain. This is equivalent to this setting with an output function of
the transitions: For the one direction, the restriction of the output function to the outgoing
transitions of one state is constant for every state. For the other direction, we use the standard
construction of the Markov chain with state space {(i, j) | 1 ≤ i, j ≤M}.

Thus, our setting can be seen as a Markov source with a finite set ofm-dimensional vectors
as alphabet.

In this chapter, we are interested in the joint distribution of the random variables K(1)
n ,

. . . , K(m)
n . For one coordinate, we will prove that the expected value of K(i)

n is ein+O(1) for
constants ei. The variance-covariance matrix of K(1)

n , . . . , K(m)
n will turn out to be Σn+O(1)

for a matrix Σ. We call Σ the asymptotic variance-covariance matrix and its entries the
asymptotic variances and covariances.

We will combinatorically characterize Markov chains with output functions such that the
variance-covariance matrix is regular. Furthermore, we give a combinatorial characterization
of the case that the asymptotic covariance is zero. As this is only influenced by two output
functions, we restrict ourselves to K(1)

n and K(2)
n in this case.

Remark 4.2.2. A Markov chain with one output function can be obtained by a transducer
with additional probability distributions for the outgoing transitions of each state and by
deleting the input labels of the transducer.

If we have two transducers where only the outputs of the transitions are different, we can
choose probability distributions for the outgoing transitions of each state. Then we obtain a

1This is no restriction as we can always add an additional state and the transitions starting in this state
with probabilities corresponding to the non-degenerate initial distribution. The output functions are then
extended by mapping these transitions to 0.

4.2. PRELIMINARIES 75

Markov chain with two output functions. Thus, we can use the results of this chapter for two
output functions (see Examples 4.4.2 and 4.4.3).

Remark 4.2.3. We can additionally have final output functions f : {1, . . . ,M} → R for each
output function k and redefine the random variable Kn as the sum of the values of the output
function k along a random path Xn plus the final output f of the final state of this path.
We will see that this does not change the main terms of the asymptotic behavior. Thus, the
results in Section 4.3 are still valid (see also Remark 4.5.5).

Remark 4.2.4. The Parry measure are probabilities pe such that every path of length n has
the same weight up to a constant factor (cf. [83, 93]). If we are interested in probabilities
such that every path of length n starting in the initial state 1 has exactly the same weight,
we have to use the Parry measure with additional exit weights: Each path is additionally
weighted by these exit weights according to the final state of the path (cf. [53, Lemma 4.1]
and Lemma 5.4.1).

However, the sum of the weights of all paths of length n is no longer normalized: It
differs from 1 by an exponentially small error term for n → ∞. This gives an approximate
equidistribution of all paths of length n. As we are interested in the asymptotic behavior for
n → ∞, the expected value and the variance of the corresponding measurable function Kn

can still be defined as usual.
If we use these exit weights ws in our setting, the main terms of the asymptotic behavior

are not changed. Thus, the theorems in Section 4.3 are still valid (see also Remark 4.5.5).
These exit weights can also be used to simulate final and non-final states of a transducer

by setting the weights of non-final states to 0. However, not all exit weights of the final
component are allowed to be zero.

Next, we define some subgraphs of the underlying graph of the final component and extend
the probabilities and the output functions to these subgraphs.

Definition 4.2.5. We define the following types of directed graphs as subgraphs of the final
component of the Markov chain.

• A rooted tree is a weakly connected digraph with one vertex which has out-degree 0,
while all other vertices have out-degree 1. The vertex with out-degree 0 is called the
root of the tree.
• A functional digraph is a digraph whose vertices have out-degree 1. Each component
of a functional digraph consists of a directed cycle and some trees rooted at vertices
of the cycle. For a functional digraph D, let CD be the set of all cycles of D.

The probabilities pe can be multiplicatively extended to a weight function for arbitrary
subgraphs of the Markov chain: Let D be any subgraph of the underlying graph of the Markov
chain, then define the weight of D by

pD =
∏
e∈D

pe.

For a path P of length n, this is exactly the probability P(Xn = P).
However, the output function k is additively extended to cycles C of the underlying graph

of the Markov chain by
k(C) =

∑
e∈C

k(e).

This can further be extended to functional digraphs:

76 4. VARIANCE AND COVARIANCE OF SIMULTANEOUS OUTPUTS OF A MARKOV CHAIN

Definition 4.2.6. Let D1 and D2 be the sets of all spanning subgraphs of the final component
of the Markov chain M which are functional digraphs and have one and two components,
respectively.

For functions g and h : E → R, we define
g(D1) =

∑
D∈D1

pD
∑
C∈CD

g(C),

(g, h)(D1) =
∑
D∈D1

pD
∑
C∈CD

g(C)h(C),

(g, h)(D2) =
∑
D∈D2

pD
∑

C1∈CD

∑
C2∈CD
C2 6=C1

g(C1)h(C2).

As functions g and h, we use the output functions k1, . . . , km and the constant function
1(e) = 1.

4.3. Main Results

In this section, we present the combinatorial characterization of output functions of
Markov chains which are asymptotically independent and of Markov chains with output func-
tions with a singular variance-covariance matrix.

If the underlying directed graph of the Markov chain is j-regular, every transition has
probability 1/j and the output function k1 : E → {0, 1, . . . , j− 1} is such that the restrictions
of k1 to the outgoing transitions of one state is bijective for every state, then these results are
stated in [56] and Chapter 3 (see also Remark 4.2.2).

The next definition describes a sequence of random variables whose difference from its
expected value is bounded for all elements.

Definition 4.3.1. The output sum Kn of a Markov chain is called quasi-deterministic if
there is a constant a ∈ R such that

Kn = an+O(1)
holds for all n.

Next we give the combinatorial characterization of output sums with bounded variance
in the case of a not necessarily independent identically distributed input sequence.

Theorem 4.1. For a finite, finally connected and finally aperiodic Markov chainM with an
output function k, the following assertions are equivalent:

(a) The asymptotic variance v of the output sum is 0.
(b) There exists a state s of the final component and a constant a ∈ R such that

k(C) = a1(C)
holds for every closed walk C of the final component visiting the state s exactly once.

(c) There exists a constant a ∈ R such that
k(C) = a1(C)

holds for every directed cycle C of the final component ofM.
In that case, an + O(1) is the expected value of the output sum and Statement (b) holds

for all states s of the final component.
IfM is furthermore strongly connected, the following assertion is also equivalent:

4.3. MAIN RESULTS 77

(d) The random variable Kn is quasi-deterministic with constant a.

This theorem is proved in Section 4.5.
In the case that the value of the output function is 0 or 1 for each transition, there are

only two trivial output functions with asymptotic variance zero. This corollary is proved in
Section 4.5.

Corollary 4.3.2. Let k : E → {0, 1}. Then the asymptotic variance v is zero if and only if
the output function k is constant on the final component.

The next theorem extends Theorem 4.1 to the joint distribution of several simultaneous
output sums by combinatorically describing the case of a singular variance-covariance matrix.

Theorem 4.2. Let M be a finite, finally connected, finally aperiodic Markov chain with m
output functions k1, . . . , km. Then the variance-covariance matrix Σ is regular if and only
if the functions 1, k1, . . . , km are linearly independent as functions from the vector space of
cycles of the final component to the real numbers, i.e. there do not exist real constants a0,
. . . , am, not all zero, such that
(4.1) a01(C) + a1k1(C) + · · ·+ amkm(C) = 0
holds for all cycles (or equivalently, for all closed walks) C of the final component.

The random variables K(1)
n , . . . , K(m)

n are asymptotically jointly normally distributed if
and only if Σ is regular.

This theorem is proved in Section 4.5.

Remark 4.3.3. Theorems 4.1 and 4.2 and Corollary 4.3.2 are independent of the choice of
the probabilities of the transitions. Only the structure of the underlying graph of the Markov
chain and the output functions influence the result. Note, however, that according to our
general assumptions, all transitions have positive probability.

The next theorem gives a combinatorial characterization of output functions of a Markov
chain which are asymptotically independent. As this characterization is given by the covari-
ance, we can restrict ourselves to two output functions without loss of generality.

Theorem 4.3. LetM be a finite, finally connected, finally aperiodic Markov chain with two
output functions k1 and k2.

Then the random variables K(1)
n and K(2)

n have the expected values e1n+O(1) and e2n+
O(1), respectively, where the constants are

(4.2)
e1 = k1(D1)

1(D1) ,

e2 = k2(D1)
1(D1) .

The variances and the covariance are v1n + O(1), v2n + O(1) and cn + O(1), with the
constants

v1 = 1
1(D1)

(
(k1 − e11, k1 − e11)(D1)− (k1 − e11, k1 − e11)(D2)

)
,

v2 = 1
1(D1)

(
(k2 − e21, k2 − e21)(D1)− (k2 − e21, k2 − e21)(D2)

)
,

78 4. VARIANCE AND COVARIANCE OF SIMULTANEOUS OUTPUTS OF A MARKOV CHAIN

1

0

2

0

w + 1

1

w
0

1 | 1

0 | 0
1 | 0

0 | 0

0 | 1

1 | 0

0
| 0

1
| 0

Figure 4.1. Transducer T (w) to compute the Hamming weight of the
width-w non-adjacent form.

c = 1
1(D1)

(
(k1 − e11, k2 − e21)(D1)− (k1 − e11, k2 − e21)(D2)

)
.

The random variables K(1)
n and K(2)

n are asymptotically independent if and only if
(k1 − e11, k2 − e21)(D1) = (k1 − e11, k2 − e21)(D2).

This theorem is proved in Section 4.5.
In the case that the expected values of K(1)

n and K(2)
n are both bounded, i.e. e1 = e2 = 0,

these random variables are asymptotically independent if and only if
(k1, k2)(D1) = (k1, k2)(D2).

4.4. Examples

In this section, we first prove the asymptotic joint normal distribution of two Hamming
weights of different digit expansions by using Theorem 4.2. Then we investigate the indepen-
dence of length 2 blocks of 0-1-sequences by using Theorem 4.3. In both cases we start with
two transducers to construct a Markov chain with two output functions, once as a Cartesian
product, once via Remark 4.2.2.

Example 4.4.1 (Width-w non-adjacent forms). Let 2 ≤ w1 < w2 be integers. We consider
the asymptotic joint distribution of the Hamming weight of the width-w1 non-adjacent form
(w1-NAF) and the Hamming weight of the w2-NAF. It will turn out that this distribution is
normal if and only if the variance-covariance matrix is regular. Using Theorem 4.2, we have
to find closed walks in the corresponding Markov chain such that all coefficients in (4.1) have
to be zero.

4.4. EXAMPLES 79

The transducer T (w) in Figure 4.1 computes the Hamming weight of the w-NAF of
the integer n when the input is the binary expansion of n (cf. [50]). It has w + 1 states.
Next, we construct the Cartesian product of the transducers for w1 and w2 and choose any
non-degenerate probability distribution, i.e. with all probabilities non-zero, for the outgoing
transitions of a state. Thus, we obtain a Markov chainM with (w1 + 1)(w2 + 1) states with
two different output functions h1 and h2 corresponding to the outputs of the transducers for
w1 and w2, respectively. We can now use Theorem 4.2 to prove that these two Hamming
weights are asymptotically jointly normally distributed.

The Cartesian product of two closed walks in T (w1) and T (w2) with the same input
sequence is a closed walk in M. We construct three different closed walks and prove that
all three coefficients in (4.1) have to be zero. For brevity, we denote a closed walk in the
Cartesian productM and its projections to T (w1) and T (w2) by the same letter.

First, we choose the closed walk C1 starting in state 1 with input sequence 0. We obtain
h1(C1) = 0 in T (w1), h2(C1) = 0 in T (w2) and 1(C1) = 1. Second, we choose the closed walk
C2 starting in 1 with input sequence 10w2−1. Because w1 < w2 and the loop at state 1, C2
is a closed walk in T (w1) and T (w2). We obtain h1(C2) = 1 in T (w1), h2(C2) = 1 in T (w2)
and 1(C2) = w2. The third choice depends on whether w1 = w2 − 1 or not:

• w1 6= w2 − 1: We choose the closed walk C3 starting in 1 with input sequence
10w1−110w1−10α where α = max(w2 − 2w1, 0). On the one hand, this is a closed
walk in T (w1) consisting of two times the cycle 1 → w1 → 1 and α times the loop
at state 1. On the other hand, this is a closed walk in T (w2) consisting of the cycle
1 → w2 → 1 and the correct number of loops at state 1. We obtain h1(C3) = 2 in
T (w1), h2(C3) = 1 in T (w2) and 1(C3) = max(w2, 2w1).
• w1 = w2 − 1: We choose the closed walk C3 starting in 1 with input sequence

10w1−110w1−110w1−1. On the one hand, this is a closed walk in T (w1) consisting
of three times the cycle 1 → w1 → 1. On the other hand, this is a closed walk in
T (w2) consisting of the closed walk 1 → w2 → w2 + 1 → w2 → 1 and the correct
number of loops at state 1. We obtain h1(C3) = 3 in T (w1), h2(C3) = 2 in T (w2)
and 1(C3) = 3w1.

This yields a system of linear equations for the coefficients a0, a1 and a2 with coefficient
matrix  1 0 0

w2 1 1
max(w2, 2w1) 2 1

 or

 1 0 0
w2 1 1
3w1 3 2

 ,
which only has the trivial solution. Thus, the Hamming weights of the w1-NAF and the
w2-NAF are asymptotically jointly normally distributed, independently of the choice of the
distributions for the Markov chain.

The next two examples investigate the asymptotic independence of length two blocks of
0-1-sequences.

Example 4.4.2 (10- and 11-blocks). The two transducers in Figure 4.2 count the number of
10- and 11-blocks in 0-1-sequences. After deleting the outputs, both transducers are the same.
Thus, any non-degenerate probability distribution on the outgoing edges of the states gives a
Markov chain with two output functions k10 (for the 10-blocks) and k11 (for the 11-blocks).

Because of the two loops and the cycle 0→ 1→ 0, Theorem 4.2 implies that the number
of 10- and 11-blocks is asymptotically normally distributed.

80 4. VARIANCE AND COVARIANCE OF SIMULTANEOUS OUTPUTS OF A MARKOV CHAIN

01
0 | 1

0 | 0

1 | 0

1 | 0

(1) 10-blocks

01
0 | 0

0 | 0

1 | 0

1 | 1

(2) 11-blocks

Figure 4.2. Transducers to compute the number of 10- and 11-blocks.

01 01 01

(1) D1

01

(2) D2

Figure 4.3. Functional digraphs of the transducers of Examples 4.4.2 and 4.4.3.

The next question is: For which choices of probability distributions is the number of 10-
and 11-blocks asymptotically independent? All functional digraphs with one or two com-
ponents are given in Figure 4.3. Using Theorem 4.3, we obtain the following system of
equations for the values of the probabilities such that the numbers of 11-blocks and 10-blocks
are asymptotically independent: first by definition

1 = p0→0 + p0→1,

1 = p1→0 + p1→1,

then by (4.2)

e10 = p0→1p1→0
p0→1p1→1 + 2p0→1p1→0 + p0→0p1→0

,

e11 = p0→1p1→1
p0→1p1→1 + 2p0→1p1→0 + p0→0p1→0

,

and finally for the independence

p0→1p1→1(−e10)(1− e11) + p0→1p1→0(1− 2e10)(−2e11) + p0→0p1→0(−e10)(−e11)
= p0→0p1→1(−e10)(−e11) + p0→0p1→1(−e10)(1− e11).

This system has non-trivial real solutions, i.e. solutions where all probabilities are non-zero,
with

p0→0 = −1
2p1→1 + 2− 1

2

√
p2

1→1 − 8p1→1 + 8

for all 0 < p1→1 < 1. Then we have 2−
√

2 < p0→0 < 1.

4.4. EXAMPLES 81

0

1

1
|0

0 | 1

1 |
0

1 | 0

0 | 0

0
|0

(1) 00-blocks

0

1

1
|0

0 | 0

1 |
0

1 | 1

0 | 0

0
|0

(2) 11-blocks

Figure 4.4. Transducers to compute the number of 00- and 11-blocks.

Thus, for these transition probabilities, the number of 10-blocks and the number of 11-
blocks are asymptotically independent.

One such example of a non-trivial solution is p1→1 = p1→0 = 0.5, p0→0 ≈ 0.7192 and
p0→1 ≈ 0.2808. Note that for the symmetric distributions p0→0 = p0→1 = p1→1 = p1→0 = 0.5,
we obtain asymptotic dependence of the number of 10- and 11-blocks.

Example 4.4.3 (00- and 11-blocks). The two transducers in Figure 4.4 count the number of
00- and 11-blocks in 0-1-sequences. They have the same underlying graph and the same input
labels. Thus, choosing any non-degenerate probability distribution of the outgoing edges of
the states yields a Markov chain with two output functions.

Because of the two loops and the cycle 0→ 1→ 0, Theorem 4.2 implies that the number
of 00- and 11-blocks is asymptotically normally distributed.

The next question is: For which choices of probability distributions is the number of 00-
and 11-blocks asymptotically independent? The functional digraphs of the final component
are the same as in Example 4.4.2, see again Figure 4.3. By Theorem 4.3, the system of equa-
tions for the transition probabilities pe such that the two output functions are asymptotically
independent are: first by definition

1 = p0→0 + p0→1,

1 = p1→0 + p1→1,

then by (4.2)

e00 = p0→0p1→0
p0→1p1→1 + 2p0→1p1→0 + p0→0p1→0

,

e11 = p0→1p1→1
p0→1p1→1 + 2p0→1p1→0 + p0→0p1→0

,

and finally for the independence
p0→1p1→1(−e00)(1− e11) + p0→1p1→0(−2e00)(−2e11) + p0→0p1→0(1− e00)(−e11)

82 4. VARIANCE AND COVARIANCE OF SIMULTANEOUS OUTPUTS OF A MARKOV CHAIN

= p0→0p1→1(1− e00)(1− e11) + p0→0p1→1(−e00)(−e11).

These equations have no solution with 0 < pe < 1 for all transitions e. Thus, the numbers of
00- and 11-blocks are asymptotically dependent for all choices of the input distributions, as
expected.

4.5. Proofs

In this section, we prove the results from Section 4.3. The proofs follow along the same
ideas as in [56] and Chapter 3. The main differences are that one has to replace “complete
transducer” by “Markov chain” and the input sum by the output sum K

(1)
n . For the sake of

completeness, we state the proofs here.
We first prove Theorem 4.3 with the help of two lemmas. For one of these lemmas, we

use a version of the Matrix-Tree Theorem for weighted directed forests proved in [16,75]. At
the end of this section, we prove Theorems 4.1 and 4.2.

Definition 4.5.1. Let A, B ⊆ {1, . . . , N}. Let FA,B be the set of all forests which are
spanning subgraphs of the final component of the Markov chainM with |A| trees such that
every tree is rooted at some vertex a ∈ A and contains exactly one vertex b ∈ B.

Let A = {i1, . . . , in} and B = {j1, . . . , jn} with i1 < · · · < in and j1 < · · · < jn. For
F ∈ FA,B, we define a function g : B → A by g(j) = i if j is in the tree of F which is rooted
in vertex i. We further define the function h : A → B by h(ik) = jk for k = 1, . . . , n. The
composition g ◦ h : A→ A is a permutation of A. We define sgnF = sgn g ◦ h.

If |A| 6= |B|, then FA,B = ∅. If |A| = |B| = 1, then sgnF = 1 and FA,B consists of all
spanning trees rooted in a ∈ A.

Theorem (All-Minors-Matrix-Tree Theorem [16, 75]). For a directed, weighted graph with
loops and multiple edges, let L = (lij)1≤i,j≤N be the Laplacian matrix, that is

∑N
j=1 lij = 0 for

every i = 1, . . . , N and −lij is the sum of the weights pe of all edges e from i to j for i 6= j.
Then, for |A| = |B|, the minor detLA,B satisfies

detLA,B = (−1)
∑

i∈A i+
∑

j∈B j
∑

F∈FA,B

pF sgnF

where LA,B is the matrix L whose rows with index in A and columns with index in B are
deleted.

The All-Minors-Matrix-Tree Theorem is still valid for |A| 6= |B| if we assume that the
determinant of a non-square matrix is 0. For notational simplicity, we use this convention in
the rest of this section.

Definition 4.5.2. The transition matrix W (x1, . . . , xm) of a Markov chain with M states
and m output functions k1, . . . , km is a M ×M matrix whose (i, j)-th entry is∑

e : i→j
pex

k1(e)
1 · · ·xkm(e)

m

where pe is the probability of the transition e.
Let A(x1, . . . , xm) be the N ×N transition matrix of the final component of the Markov

chain. Let the order of the states be such that the transition matrix of the whole Markov

4.5. PROOFS 83

chain W (x1, . . . , xm) has the block structure

(4.3) W (x1, . . . , xm) =
(
∗ ∗
0 A(x1, . . . , xm)

)
where ∗ denotes any matrix. If the Markov chain is strongly connected, the matrices ∗ are
not present (they have 0 rows).

We first use the All-Minors-Matrix-Tree Theorem to connect the derivatives of the char-
acteristic polynomial of the transition matrix with a sum of weighted digraphs in the next
lemma.

Lemma 4.5.3. For f(x1, x2, z) = det(I − zA(x1, x2)), we have
fx1(1, 1, 1) = −k1(D1), fx1x2(1, 1, 1) = (k1, k2)(D2)− (k1, k2)(D1),
fx2(1, 1, 1) = −k2(D1), fx1z(1, 1, 1) = (k1,1)(D2)− (k1,1)(D1),
fz(1, 1, 1) = −1(D1), fx2z(1, 1, 1) = (k2,1)(D2)− (k2,1)(D1),

fx1x1(1, 1, 1) + fx1(1, 1, 1) = (k1, k1)(D2)− (k1, k1)(D1),
fx2x2(1, 1, 1) + fx2(1, 1, 1) = (k2, k2)(D2)− (k2, k2)(D1),
fzz(1, 1, 1) + fz(1, 1, 1) = (1,1)(D2)− (1,1)(D1).

Proof. The idea of the proof is as follows: We start writing the derivatives as sums over
all states. Using the All-Minors-Matrix-Tree Theorem, we rewrite this into a weighted sum
over forests and then into a weighted sum over functional digraphs.

Let u1, u2 be any of the variables x1, x2 or z. For a matrix M = (mij)1≤i,j≤N , we define
matrices Ma:u1 = (m̂ij)1≤i,j≤N with m̂ij = mij for i 6= a and m̂aj = ∂

∂u1
maj otherwise. Thus

Ma:u1 is the matrix M where row a is differentiated with respect to u1.
We further define the derivatives at 1 = (1, 1, 1) as

Du1(·) = ∂

∂u1
(·)
∣∣∣
1

and

Du1u2(·) = ∂2

∂u1∂u2
(·)
∣∣∣
1
.

Applying the product rule to the definition of the determinants gives us

Du1(f) =
N∑
j=1

det(I − zA(x1, x2))j:u1

∣∣∣
1
,

Du1u2(f) =
N∑
i=1

N∑
j=1

det(I − zA(x1, x2))i:u1, j:u2

∣∣∣
1
.

In these equations, we have sums over all states.
Later, we will use Laplace expansion along row j to determine the determinants det(I −

zA(x1, x2))j:u1 . If i 6= j, we will use Laplace expansion along rows i and j to determine
det(I − zA(x1, x2))i:u1, j:u2 . If i = j, we will only expand along row j.

For a transition e, we denote by t(e) and h(e) the tail and the head of the transition e,
respectively. For brevity, we write we = pex

k1(e)
1 x

k2(e)
2 z for a transition e.

84 4. VARIANCE AND COVARIANCE OF SIMULTANEOUS OUTPUTS OF A MARKOV CHAIN

If we use Laplace expansion along two different rows, we must be careful with the sign.
Therefore, we define

σde = (−1)[t(e)>t(d)]+[h(e)>h(d)]

for two transitions d and e. Here, we use Iverson’s notation, that is [expression] is 1 if
expression is true and 0 otherwise (cf. [41]).

Let L be the Laplacian of the underlying graph of the final component of the Markov
chain with the probabilities as weights, that is L = I −A(1, 1).

Recall the notation LA,B for the matrix where the rows corresponding to A and the
columns corresponding to B have been removed. Laplace expansion yields

Du1(f) = −
N∑
j=1

∑
e∈E
t(e)=j

(−1)t(e)+h(e)Du1(we) det(L{t(e)},{h(e)}),

Du1u2(f) =
N∑
i=1

N∑
j=1
j 6=i

∑
e∈E
t(e)=j

∑
d∈E
t(d)=i

(
(−1)t(e)+h(e)+t(d)+h(d)σdeDu1(we)Du2(wd)

× det(L{t(e),t(d)},{h(e),h(d)})
)

−
N∑
j=1

∑
e∈E
t(e)=j

(−1)t(e)+h(e)Du1u2(we) det(L{t(e)},{h(e)}).

Next, we use the All-Minors-Matrix-Tree Theorem and change the summation over all
states to a summation over forests. We obtain

Du1(f) = −
∑
e∈E

Du1(we)
∑

F∈F{t(e)},{h(e)}

pF sgnF,

Du1u2(f) =
∑
e∈E

∑
d∈E
d6=e

σdeDu1(we)Du2(wd)
∑

F∈F{t(d),t(e)},{h(d),h(e)}

pF sgnF

−
∑
e∈E

Du1u2(we)
∑

F∈F{t(e)},{h(e)}

pF sgnF.

Let F ∈ F{t(e)},{h(e)} be a forest for a transition e ∈ E . Then F+e is a spanning functional
digraph with one component. Let F ∈ F{t(d),t(e)},{h(d),h(e)} be a forest for transitions d, e ∈ E .
Then F + d+ e is a spanning functional digraph with one or two components, depending on
σde sgnF . If σde sgnF = 1, then it has two components. Otherwise, it has one component.
Now we can change the summation into a sum over functional digraphs and obtain

Du1(f) = −
∑
D∈D1

∑
C∈CD

∑
e∈C

pD\{e}Du1(we),

Du1u2(f) =
∑
D∈D2

∑
C1∈CD

∑
C2∈CD
C2 6=C1

∑
e∈C1

∑
d∈C2

pD\{e,d}Du1(we)Du2(wd)

−
∑
D∈D1

∑
C∈CD

∑
e∈C

∑
d∈C
d6=e

pD\{d,e}Du1(we)Du2(wd)

4.5. PROOFS 85

−
∑
D∈D1

∑
C∈CD

∑
e∈C

pD\{e}Du1u2(we).

For a transition e, we know the first derivatives
Dx1(we) = pek1(e), Dx2(we) = pek2(e), Dz(we) = pe1(e),

and the second derivatives
Dx1x2(we) = pek1(e)k2(e), Dx1x1(we) = pek1(e)(k1(e)− 1),
Dx1z(we) = pek1(e)1(e), Dx2x2(we) = pek2(e)(k2(e)− 1),
Dx2z(we) = pek2(e)1(e), Dzz(we) = 0.

As the probabilities pD = pD\{e}pe are multiplicative, we obtain the formulas stated in
the lemma. �

The following lemma will be used for m ≥ 2 output functions later on.

Lemma 4.5.4. Let f(x1, . . . , xm, z) = det(I − zA(x1, . . . , xm)). Then there is a unique
dominant root z = ρ(x1, . . . , xm) of f in a neighborhood of (1, . . . , 1).

The moment generating function of (K(1)
n , . . . ,K

(m)
n) has the asymptotic expansion

E(exp(s1K
(1)
n + · · ·+ smK

(m)
n)) = eu(s1,...,sm)n+v(s1,...,sm)(1 +O(κn))

where κ < 1,
u(s1, . . . , sm) = − log ρ(es1 , . . . , esm),

and v(s1, . . . , sm) are analytic functions in a small neighborhood of (0, . . . , 0).

Proof. The moment generating function of (K(1)
n , . . . ,K

(m)
n) is

E(exp(s1K
(1)
n + · · ·+ smK

(m)
n)) = [zn]vt1(I − zW (es1 , . . . , esm))−1v2(es1 , . . . , esm)

for the initial vector v1, and a vector v2(x1, . . . , xm) encoding all the final information of the
states2 where we write [zn]b(z) for the coefficient of zn in the power series b. Because of the
block structure of the transition matrix W of the whole Markov chain in (4.3), we obtain

E(xK
(1)
n

1 · · ·xK
(m)
n

m) = [zn] F1(x1, . . . , xm, z)
det(I − zW (x1, . . . , xm))

= [zn] F1(x1, . . . , xm, z)
F2(x1, . . . , xm, z)f(x1, . . . , xm, z)

for “polynomials” F1 and F2 , i.e. finite linear combinations of xα1
1 · · ·xαmm zβ for αi ∈ R and

β a non-negative integer. The function F2 corresponds to the determinant of the non-final
part of the Markov chain.

We obtain the coefficient of zn by singularity analysis (cf. [30]). Since the final component
ofM is again a Markov chain, the dominant singularity of 1/f(1, . . . , 1, z) is 1 by the theorem
of Perron–Frobenius (cf. [33]). By the aperiodicity of the final component, this dominant
singularity is unique and it is ρ(1, . . . , 1) = 1.

Next, we consider the non-final components of the Markov chain using the same arguments
as in [56] and Chapter 3. The corresponding non-final componentM0 is not a Markov chain

2This information is the final output (see Remark 4.2.3) and the exit weight (see Remark 4.2.4) included
as wixf1(i)

1 · · ·xfm(i)
m in the i-th coordinate of v2(x1, . . . , xm). This does not change the asymptotic behavior

(see Remark 4.5.5).

86 4. VARIANCE AND COVARIANCE OF SIMULTANEOUS OUTPUTS OF A MARKOV CHAIN

as the transition matrix is not stochastic. Let M+
0 be the Markov chain that is obtained

from M0 by adding loops with the missing probabilities where necessary. The dominant
eigenvalue of the transition matrix of M+

0 is 1. As the transition matrices of M0 and M+
0

satisfy element-wise inequalities but are not equal (at (x1, . . . , xm) = (1, . . . , 1)), the theorem
of Perron–Frobenius (cf. [33, Theorem 8.8.1]) implies that the dominant eigenvalues of M0
have absolute value less than 1. Thus, the dominant singularities of F2(1, . . . , 1, z)−1 are at
|z| > 1.

As A(1, . . . , 1, z) = (1− z)−1, we obtain F1(1, . . . , 1) 6= 0.
Thus, there is a is the unique, dominant singularity of

F1(1, . . . , 1, z)
F2(1, . . . , 1, z)f(1, . . . , 1, z) ,

which is ρ(1, . . . , 1) = 1. This also holds for (x1, . . . , xm) in a small neighborhood of (1, . . . , 1)
by the continuity of the eigenvalues of the transition matrices. Thus, ρ(x1, . . . , xm) is this
unique dominant singularity.

Now, singularity analysis (cf. [30]) implies the statement of this lemma. �

Remark 4.5.5. The main term of the asymptotic expansion of the moment generating func-
tion only depends on ρ(x1, . . . , xm) and therefore on f(x1, . . . , xm, z). It does not depend on
the “polynomials” F1(x1, . . . , xm, z) and F2(x1, . . . , xm, z). Thus, only the final component
influences the main term. Neither the states in the non-final part of the Markov chain nor
the final outputs and exit weights influence the main term.

Now, we can use the previous two lemmas to prove Theorem 4.3.

Proof of Theorem 4.3. By Lemma 4.5.4 for two output functions k1 and k2, the mo-
ment generating function satisfies the conditions of the Quasi-Power Theorem [56, Theo-
rem 5.1] or Theorem 3.6, which yields the expected value

E(K(1)
n ,K(2)

n) = n gradu(0) +O(1)
and the variance

V(K(1)
n ,K(2)

n) = nHu(0) +O(1)
with gradu(0) and Hu(0) the gradient and the Hessian of u at 0, respectively. Furthermore,
we obtain an asymptotic joint normal distribution of the standardized random vector if the
Hessian is not singular by [56, Theorem 3.9] or Theorem 3.6. Otherwise, the limiting ran-
dom vector is either a pair of degenerate random variables, or a degenerate and normally
distributed one, or a linear transformation thereof. Thus, the random variables K(1)

n and
K

(2)
n are asymptotically independent if and only if the covariance is zero.
By implicit differentiation, we obtain the following formulas for the constants of the

moments in terms of the partial derivatives of f :

e1 = fx1

fz

∣∣∣
1
,

e2 = fx2

fz

∣∣∣
1
,

v1 = 1
f3
z

(f2
x1(fzz + fz) + f2

z (fx1x1 + fx1)− 2fx1fzfx1z)
∣∣∣
1
,

v2 = 1
f3
z

(f2
x2(fzz + fz) + f2

z (fx2x2 + fx2)− 2fx2fzfx2z)
∣∣∣
1
,

4.5. PROOFS 87

c = 1
f3
z

(fx1fx2(fzz + fz) + f2
z fx1x2 − fx2fzfx1z − fx1fzfx2z)

∣∣∣
1
.

Now, Lemma 4.5.3 implies the results as stated in the theorem. �

Proof of Theorem 4.1. The equivalence of (b) and (c) is the same as in [56, Theo-
rem 3.1] and Theorem 3.1.
(a) ⇔ (b): WLOG, we assume that the expected value of Kn is bounded (otherwise replace

k(e) by k(e) − e1 for all transitions e and e1 the constant in (4.2)). Under this
assumption, Theorem 4.3 implies that (b) can only hold with k = 0.

As in the proof in [56, Theorem 3.1] and Theorem 3.1, (a) is equivalent to
Csxx(1, 1) + Csx(1, 1) = 0 where

Cs(x, z) =
∑
C∈Cs

pCx
k(C)z1(C)

is the generating function of the set Cs of all closed walks in the final component of
M which visit state s exactly once where x marks the output sum of the function k
and z marks the length of the walk.

This is equivalent to ∑
C∈Cs

pCk(C)2 = 0

which is equivalent to k(C) = 0 for all C ∈ Cs.
To prove the remaining equivalence, we prove the equivalence of the following two assertions
for not necessarily strongly connected Markov chains.

(d) The random variable Kn is quasi-deterministic with constant a.
(e) There exists a constant a ∈ R such that

k(C) = a1(C)
holds for every directed cycle C of the whole Markov chainM.

Then the theorem follows immediately because the strongly connected underlying graph of
the Markov chain implies (e) ⇔ (c).
(d) ⇒ (e): Let C be an arbitrary cycle of the Markov chain and P be a path from the initial

state 1 to any state of the cycle. For some n, consider the path consisting of P and n
times C. Its output sum with respect to k is then k(P)+nk(C). This is a realization
of the quasi-deterministic random variable K1(P)+n1(C) and thus fulfills

a(1(P) + n1(C)) +O(1) = k(P) + nk(C).
Thus, n(k(C)− a1(C)) is bounded by a constant depending on P and C, but inde-
pendent of n. Therefore, we know that k(C) = a1(C).

(e) ⇒ (d): WLOG, we assume a = 0 (otherwise replace k(e) by k(e) − a for all transitions
e). All cycles have output sum 0 so that every transition contributes at most once
to Kn. Thus, for every path Xn, we have |Kn| ≤

∑
e∈E |k(e)| + maxs∈{1,...,M} |f(s)|

where f is the final output function (see Remark 4.2.3). Therefore, we have a quasi-
deterministic random variable Kn = O(1).

�

Proof of Corollary 4.3.2. This follows by the same arguments as in [56, Corollary
3.6] and Corollary 3.3.4. �

88 4. VARIANCE AND COVARIANCE OF SIMULTANEOUS OUTPUTS OF A MARKOV CHAIN

Proof of Theorem 4.2. WLOG, we assume that EK(i)
n = O(1) for i = 1, . . . ,m by

subtracting the corresponding constant of the expected value from each output function.
There exists a unitary matrix T = (tji)1≤j,i≤m such that the variance-covariance matrix Σ
can be diagonalized as TΣT> = D. The diagonal matrix D is the variance-covariance matrix
of the linearly transformed random vector Yn = TKn.

Then Σ is singular if and only if the diagonal matrix D is singular. This is equivalent to
(4.4) V(tj1K(1)

n + · · ·+ tjmK
(m)
n) = O(1)

holds for a j ∈ {1, . . . ,m}. Now consider the output function tj1k1 + · · · + tjmkm. By
Theorem 4.1, (4.4) is equivalent to

tj1k1(C) + · · ·+ tjmkm(C) = 0
holds for all cycles of the final component (since the expected value of this output function is
O(1)).

If we shift back the output function such that the expected value is no longer bounded,
we obtain an additional summand a01(C).

The asymptotic joint normal distribution follows from Lemma 4.5.4 and the multidimen-
sional Quasi-Power Theorem [24, Theorem 2.22]. �

CHAPTER 5

Analysis of Carries in Signed Digit Expansions

In this chapter, the number of positive and negative carries in the addition of two inde-
pendent random signed digit expansions of given length is analyzed asymptotically for the
(q, d)-system and the symmetric signed digit expansion. The number of iterations in von
Neumann’s parallel addition method for the symmetric signed digit expansion is also ana-
lyzed. One purpose of this chapter is to provide the theoretical foudations such that the
actual analysis can be performed algorithmically.

Obtaining the values of the constants occuring in the asymptotic analysis of standard
and von Neumann’s addition requires computations involving finite state machines and de-
terminants of matrices in several variables. These computations are performed using the
mathematical software system SageMath [96]. Notebooks containing all the computations
can be found at [54]. However, the existence of these constants follows from the theoretical
results.

This chapter corresponds to [53], which is submitted for publication. This is joint work
with Clemens Heuberger and Helmut Prodinger.

5.1. Introduction

We consider two types of digit expansions: On the one hand, we investigate (q, d)-
expansions, that are q-ary digit expansions with digit set {d, . . . , q+ d− 1}. With d = 0, this
includes the case of the standard q-ary expansion. Consecutive digits are independent in this
case. On the other hand, the symmetric signed digit expansion [58] has an even base q and
the redundant digit set {−q/2, . . . , q/2}. To remove the redundancy, there is a syntactical
rule to decide which of the digits −q/2 and q/2 is used. This rule introduces dependencies
between consecutive digits.

Two different addition algorithms are investigated. The first one is the standard addition:
We add two digits starting at the least significant position. If the result is not in the given
digit set or does not fulfill the syntactical conditions, then a non-zero carry is produced. This
carry is added to the sum of the two digits at the next position. An example for this standard
addition of two decimal expansions is given in Table 5.1. In the case of positive and negative
digits, positive and negative carries occur.

2 1 4 6
10 21 51 50
3 4 0 1

Table 5.1. Example for standard addition in the decimal system. The sub-
scripts in the second row are the carries.

89

90 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

5377 first summand
8125 second summand
3492 first interim result

10010 carries
13402 second interim result

000100 carries
013502 final result

0000000
Table 5.2. Example for von Neumann’s addition in the decimal system.

In contrast to standard addition, von Neumann’s addition is a parallel algorithm with
several iterations. The idea is to add the digits at each position in parallel (the interim
result). If this result is not admissible in the given digit system, then a non-zero carry is
produced and the interim result is corrected correspondingly at this position. However, this
carry is not added immediately: The interim result and the carries are the input for the next
iteration. When the carry sequence only contains zeros, then the algorithm terminates. An
example for von Neumann’s addition is shown in Table 5.2 for the addition of two decimal
expansions.

The number of iterations of von Neumann’s addition is of interest as it corresponds to
the running time.

The outline of this chapter is as follows. In Section 5.2, we define (q, d)-expansions and
symmetric signed digit expansions. We first analyze the standard addition in Sections 5.3–
5.5. The algorithms and the corresponding transducers for the standard addition of (q, d)-
expansions and symmetric signed digit expansions are presented in Section 5.3. Our proba-
bilistic model is to choose both summands of length ` independently such that each expansion
of length ` is equally likely. In the case of the symmetric signed digit expansions, the de-
pendencies between the digits require approximating the equidistribution with an error that
does not influence the final result. The corresponding probabilities for general regular lan-
guages are defined in Lemma 5.4.1 in Section 5.4, see also [93] and [83]. In Section 5.5, we
combine this approximate equidistribution with the transducers from Section 5.3.2 to obtain
an asymptotic analysis including the expectation, the variance and asymptotic normality in
the main Theorems 5.1 and 5.2 for the (q, d)-system and the symmetric signed digit system,
respectively.

Then, we analyze von Neumann’s addition. We start in Section 5.6 with the algorithms
and the automaton. Theorem 5.3 provides a general framework for the analysis of sequences
occurring in this context. Then we again use the approximate equidistribution from Sec-
tion 5.4 to asymptotically analyze the number of iterations of von Neumann’s addition in
Theorem 5.4 in Section 5.7. This analysis extends the results in [72] and [59] to the symmet-
ric signed digit expansions and to include not only the expected value but also the variance
and a convergence in distribution.

5.3. STANDARD ADDITION 91

5.2. Digit Expansions

In this section, we define the digit expansions which will be used in later sections. We
also recall their properties.

5.2.1. (q, d)-expansions.

Definition 5.2.1. Let −q < d ≤ 0 be two integers with q ≥ 2. The (q, d)-expansion of
an integer x is the q-ary expansion (x` . . . x0)q with digits xi ∈ {d, . . . , q + d − 1} such that
x =

∑`
i=0 xiq

i.

Example 5.2.2. The (4,−1)-expansion of 3 is (11̄)4, where we write 1̄ for the digit −1.

The (q, d)-expansion exists for all integers if d 6= 0 and d 6= −q + 1. For d = 0 (this is the
standard q-ary expansion), only the non-negative integers have a (q, d)-expansion. Conversely,
for d = −q + 1, only the non-positive integers have a (q, d)-expansion. If the (q, d)-expansion
of an integer exists, then it is unique up to leading zeros.

If q is odd and d = −q+1
2 , then the (q, d)-expansion minimizes the sum of absolute values

of the digits among all q-ary expansions with arbitrary digits (see [58]).

5.2.2. Symmetric Signed Digit Expansion. We recall the definition of the symmetric
signed digit expansion (SSDE) as defined in [58] and further analyzed in [59].

Definition 5.2.3. Let q ≥ 2 be an even integer. The symmetric signed digit expansion
(SSDE) of an integer is the q-ary digit expansion (x` . . . x0)q with xi ∈ {− q

2 , . . . ,
q
2} such that

the syntactical rule
|xj | =

q

2 =⇒ 0 ≤ sgn(xj)xj+1 ≤
q

2 − 1

is satisfied for 0 ≤ j < `.

In [58], it is shown that each integer n has a unique SSDE (up to leading zeros). It
minimizes the sum of absolute values of the digits among all q-ary expansions of n with
arbitrary digits (cf. [58]).

For q = 2, we obtain the digit set {0,±1} and the syntactical rule that at least one of any
two adjacent digits is zero. This digit expansion is also called non-adjacent form (cf. [89]).

5.3. Standard Addition

We write bold face letters for sequences which are padded with zeros on the left.
Let x = . . . x1x0 and y = . . . y1y0 be the two summands given as q-ary expansions with

digit setD (possibly satisfying some syntactical rules). Then standard addition can be written
in the form

. . . x1 x0

. . . c2 y1c1 y0c0

. . . z1 z0

where xi + yi + ci = zi − qci+1, c0 = 0 with zi ∈ D and z = . . . z1z0 satisfying the syntactical
rules of the digit system under consideration. We asymptotically analyze the sequence of
carries c = . . . c2c1.

From a different point of view, the standard addition with digit set D is a conversion
between different digit sets: We have a q-ary digit expansion with digits in D + D and we

92 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

1 2 3 1̄
11 20 11̄ 1̄0
3 1̄ 3 3

Table 5.3. Example for standard addition for (5,−1)-expansions. The sub-
scripts in the second row are the carries.

1 1̄ 0 2
10 1̄1 11 20
2 1̄ 2̄ 0

Table 5.4. Example for standard addition for SSDEs for q = 4. The sub-
scripts in the second row are the carries.

want to transform this digit expansion into a digit expansion with digit set D satisfying all
syntactical rules. This can be written in the form

. . . c2 s1c1 s0c0

. . . z1 z0

where si = xi + yi ∈ D +D. We call the sequence s the digitwise sum of x and y and write
s = x+ y.

We will mostly use this point of view. Most of the algorithms and transducers require
the input of s. If there are syntactical rules for x and y, then the sequence s can not be
arbitrary.

Remark 5.3.1. From this point of view, it is clear that interchanging two digits xi and yi
of the two summands does not influence the result, but only both summands. The carries,
the digitwise sum and the steps taken by the algorithms and the transducers stay the same
as they depend only on the digitwise sum.

5.3.1. Algorithms.
5.3.1.1. Standard Addition for (q, d)-expansions. The digit set is D = {d, . . . , q + d− 1}.

Algorithm 5.1 transforms a q-ary expansion with digit set D +D into a (q, d)-expansion. As
there are no syntactical rules, all digits are independent. Thus, we do not have to look ahead
when choosing the carry.

An example of standard addition for (5,−1)-expansions using this algorithm is given in
Table 5.3.

5.3.1.2. Standard Addition for SSDEs. Let q ≥ 2 be even. Algorithm 5.2 transforms a
q-ary expansion with digit set {−q, . . . , q} into a SSDE. As the choice between the redundant
digits q

2 and − q
2 depends on the next digit, we have to look ahead at the next digit in these

cases. This algorithm is an extension of the one in [59] taking into account that we start with
a larger digit set.

An example of standard addition for SSDEs with q = 4 using this algorithm is given in
Table 5.4.

5.3. STANDARD ADDITION 93

Algorithm 5.1 Standard addition for two (q, d)-expansions
Input: digit expansion (s` . . . s0)q with digits in {2d, . . . , 2q + 2d− 2}
Output: (q, d)-expansion z of (s` . . . s0)q
z = ()
c = 0
for j = 0 to ` do

a = sj + c
c = 0
if a ≥ q + d then

c = 1
else if a ≤ d− 1 then

c = −1
end if
a = a− cq
z = (a) + z

end for

Algorithm 5.2 Standard addition for two SSDEs
Input: digit expansion (s` . . . s0)q with digits in {−q, . . . , q}
Output: SSDE z of (s` . . . s0)q
s`+1 = 0
z = ()
c = 0
for j = 0 to ` do

a = sj + c
c = 0
if a > q

2 then
c = 1

else if a < − q
2 then

c = −1
else if a = q

2 and (− q
2 ≤ sj+1 < 0 or q

2 ≤ sj+1 < q) then
c = 1

else if a = − q
2 and (−q < sj+1 ≤ − q

2 or 0 < sj+1 ≤ q
2) then

c = −1
end if
a = a− cq
z = (a) + z

end for

5.3.2. Transducers. In this section, we present the transducer for the algorithms pre-
sented in the last section.

We are not interested in the output of the addition, but only in the carries. Thus we only
use the carries as the output of the transducer. But, if required, the output digits can easily
be reconstructed.

94 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

In our setting, a transducer consists of a finite set of states S, a finite input alphabet
D+D, an output alphabet, a set of transitions E ⊆ S2× (D+D) with input labels in D+D,
output labels in the output alphabet for each transition, and an initial state. All states are
final.

The input of the transducer is a digit expansion with digits in D+D. The output of the
transducer is the sequence of labels of a path starting in the initial state with the given input
as the input label. In our cases, there exists always such a path and it is unique (i.e., the
transducer is complete and deterministic).

The labels of the states encode the current carry (except for the situations when we have
to look ahead). The number of states is independent of q. The number of transitions between
two states depends on the base q.

To plot the transducer, we group these transitions and their labels. We draw only one arc
and write the label M | c for a set M ⊂ D +D to represent a group of transitions consisting
of one transition with input label m and output label c for every m ∈M . If M is the empty
set, then there are no such transitions. This may happen for special values of d or q.

The output label of a transition is one carry c, a pair of carries c, or no carry c, i.e.,
c ∈ {0, 1, 1̄,−}∪{0, 1, 1̄}2, where “−” denotes the empty output. The input of the transducer
is the sequence s of digitwise sums.

Let ` and u be the minimum and the maximum of the doubled digit set D +D. For the
labels of the transitions, we define

M + ε =
(
{m+ ε | m ∈M} ∪ (M ∩ {`, u})

)
∩ (D +D)

for ε = ±1 and a set M . This definition is motivated by the following interpretation: When-
ever a setM = {j, . . . , u} occurs, it is actually meant to be the interval [j,∞) intersected with
the doubled digit set. Subtracting 1 leads to [j − 1,∞), again intersected with the doubled
digit set. This corresponds to M − 1 as defined above.

5.3.2.1. Standard Addition for (q, d)-expansions. The transducer in Figure 5.1 computes
the carries as in Algorithm 5.1. We use the sets L = {2d, . . . , d− 1}, D = {d, . . . , q + d− 1}
and H = {q + d, . . . , 2q + 2d− 2}.

The transitions are constructed by using Algorithm 5.1 for the current input and carry.
5.3.2.2. Standard Addition for SSDEs. The transducer in Figure 5.2 computes the carries

as in Algorithm 5.2. We use the sets L = {0, . . . , q2 − 1}, H = { q2 + 1, . . . , q} and Hq =
{ q2 , . . . , q − 1}.

The transitions are constructed by using Algorithm 5.2 for the current input and carry.
The labels of the states −1, 0 and 1 encode the current carry. In the states with labels

± q
2 , we do not know yet whether the digit of the sum should be q

2 or − q
2 and thus, which

carry is produced. To decide this, we have to look at the next digit. Thus, the transitions
leading to a state ± q

2 have no output (−) and the transitions starting at a state ± q
2 have two

output digits.

5.4. Approximate Equidistribution

As a probabilistic input model, we want to use an equidistribution on all digit expan-
sions satisfying certain syntactical rules. This is easy in the case of (q, d)-expansions (see
Section 5.4.1) because there are no syntactical rules. But in the case of a general regular lan-
guage, like the SSDE, we can only approximate an equidistribution by Lemma 5.4.1. However,
this approximation does not influence the main terms of the results.

5.4. APPROXIMATE EQUIDISTRIBUTION 95

0

1

−1

L+ 1 | 1̄

D
+ 1 | 0

H
+

1
|1

L |
1̄

D | 0H | 1

L
−

1
|1̄

D − 1 | 0

H − 1 | 1

Figure 5.1. Standard addition for two (q, d)-expansions.

A regular language is recognized by an automaton. An automaton is defined to consist
of states, transitions between these states with labels, an initial state and final states. So to
say, it is a transducer without output. The automaton recognizes a word from a language, if
there exists a path starting at the initial state, leading to a final state with this word as the
label.

We call an automaton aperiodic if its underlying directed graph is aperiodic, i.e., the
greatest common divisor of all lengths of directed cycles of the graph is 1. If the underly-
ing directed graph is strongly connected, then the automaton is so, too. If an automaton
is strongly connected and aperiodic, then the adjacency matrix of the underlying graph is
primitive.

Given an automaton A for a regular language, we automatically construct transition
probabilities between the states to obtain an approximate equidistribution on all words of
given length `. The weight of the word is the product of the transition probabilities multiplied
with an exit weight (the factor in front of the product in (5.2) below). This corresponds to an
approximate equidistribution on all paths of length ` of the underlying graph of the automaton
starting in the initial state. Without the exit weights, these transition probabilities are the
same as defined by Shannon in [93] and Parry in [83]. The computations of this lemma are
submitted to be included as Automaton.shannon_parry_markov_chain in a future version
of SageMath [96] (see Ticket #18089).

Lemma 5.4.1 ([46]). Let A be a deterministic automaton with set of states {1, . . . , n}, initial
state 1, final states ∅ 6= F ⊆ {1, . . . , n} recognizing a regular language L. We assume that the
adjacency matrix A of the underlying graph of A is primitive.

The dominant eigenvalue of A is denoted by λ, all other eigenvalues of A are assumed to
be of modulus less than or equal to ξλ for some 0 < ξ < 1. If there are eigenvalues of modulus

http://trac.sagemath.org/18089

96 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

0

1

−1

q
2

− q
2 −H + 1 | 1̄

(−L
∪ L

) + 1 | 0

H
+

1
|1

−H
| 1̄

−L ∪ L | 0

H | 1

−
H
−

1
|1̄

(−L ∪ L)− 1 | 0

H − 1 | 1

L | 00, −L− 1 | 01

H
q | 11, {q} | 10

−H
| 1̄

0

{ q2} | −

{ q2 −
1} | −

{
q 2
+

1}
| −

L+ 1 | 01̄, −L
| 00

H
| 1

0

−Hq | 1̄1̄, {−q} | 1̄0

{−
q
2}
| −

{−
q 2
−

1}
| −

{− q
2 + 1} | −

Figure 5.2. Standard addition for two SSDEs.

ξλ, then each of them must be semisimple, i.e., its algebraic and geometric multiplicities
coincide.

Let w > 0 and u > 0 be right and left eigenvectors of A to λ, respectively, such that w1 = 1
and 〈u,w〉 = 1.

For a transition t from some state i to some state j, we set

(5.1) pt = wj
wiλ

.

For ` ≥ 0, the set of words of L of length ` is denoted by L`. For a word x ∈ L`, we denote
the states and transitions used when A reads x by 1 = s0, . . . , s` and t1, . . . , t`, respectively.
The weight W`(x) of x is then defined to be

(5.2) W`(x) = 1
ws`〈u, eF 〉

∏̀
j=1

ptj

where eF is the indicator vector of the set F of final states.

5.4. APPROXIMATE EQUIDISTRIBUTION 97

Then

(5.3)
∑

t leaves i
pt = 1

holds for all states i and

(5.4) W`(x) = 1
|L`|

(1 +O(ξ`))

holds uniformly for ` ≥ 0 and x ∈ L`.
Furthermore, consider the time-homogeneous Markov chainM on the state space {1, . . . ,

n} where the transition probability from state i to state j is
∑
t pt where the sum runs over

all transitions in A from i to j. Then this Markov chain has the stationary distribution

(5.5) (u1w1, . . . , unwn).

For large ` and a transition t from some state i to some state j, pt can be thought as the
probability of using t under the condition that the automaton is currently in state i. Note
that the sum in (5.3) runs over all transitions leaving i such that multiple transitions between
i and j are counted separately although their individual weights pt only depend on i and j. It
turns out that the exit weights do not influence the main term of our asymptotic expressions.

Proof of Lemma 5.4.1. We first note that the cardinality |L`| is given by

|L`| = e>1 A
`eF = 〈e1, w〉〈u, eF 〉λ`(1 +O(ξ`)) = 〈u, eF 〉λ`(1 +O(ξ`))

where e1 = (1, 0, . . . , 0).
For x ∈ L` with associated sequence of states (s0, . . . , s`), we have

W`(x) = 1
ws`〈u, eF 〉

∏̀
j=1

wsj
wsj−1λ

= 1
ws0〈u, eF 〉λ`

.

As ws0 = w1 = 1, we get (5.4).
Next, we prove (5.3) by rewriting the sum as∑

t leaves i
pt =

n∑
j=1

aij
wj
wiλ

= 1

by definition of w.
Finally, the transition matrix of the Markov chainM is

P =
(
aij

wj
wiλ

)
1≤i,j≤n

by definition of the Markov chain and (5.1). Thus

P = 1
λ

diag
(1
w1
, . . . ,

1
wn

)
A diag(w1, . . . , wn).

As

(u1w1, . . . , unwn)P = 1
λ

(u1, . . . , un)A diag(w1, . . . , wn)

= (u1, . . . , un) diag(w1, . . . , wn)
= (u1w1, . . . , unwn),

98 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

0

d, . . . , q + d− 1

Figure 5.3. Automaton recognizing (q, d)-expansions.

(u1w1, . . . unwn) is a left eigenvector of P to the eigenvalue 1. By definition of u and w,∑n
i=1 uiwi = 1. AsM is aperiodic and irreducible, (u1w1, . . . , unwn) is the unique left eigen-

vector with this property and therefore the stationary distribution. �

The weight W` induces a probability distribution on the words of length ` up to an
exponentially small error. Each word has approximately the same weight. If we see the
transition probabilities as a part of the automaton, we obtain a probabilistic automaton:
Definition 5.4.2. A probabilistic automaton is an automaton together with a map p : t 7→ pt
from the set of transitions to the interval [0, 1] such that∑

t leaves s
pt = 1

holds for all states s. We call pt the weight or the probability of the transition t.
5.4.1. Weights for (q, d)-expansions. We can use Lemma 5.4.1 in this case, too, but

the digits of a (q, d)-expansion are independent of each other because there are no syntactical
rules involving more than one digit. Therefore we can directly obtain equidistribution, not
only approximating it. We first describe the direct way and later, in Remark 5.4.3, we consider
using Lemma 5.4.1.

For any digit x0 ∈ D, we use the weights W`(x0) = 1
q . The exit weight is 1. By indepen-

dence, we have the weight
W`(x) = 1

q`

for a digit expansion x of length `. With this weight, we have an equidistribution of all
(q, d)-expansions of length `.
Remark 5.4.3. The same weights can be obtained by Lemma 5.4.1. The transition proba-
bilities are p0→0 = q−1. As the automaton recognizing (q, d)-expansions has only one state
(see Figure 5.3), there is no error term in (5.4).

5.4.2. Weights for SSDEs. The automaton in Figure 5.4 recognizes SSDEs. The ad-
jacency matrix of this automaton is

A =

0 q
2 0

1 q − 1 1
0 q

2 0


where the states are ordered by their labels.

The matrix A has the eigenvalues q, −1 and 0. The vectors (1
q+1 ,

q
q+1 ,

1
q+1) and (1

2 , 1,
1
2)>

are the left and right eigenvector corresponding to the eigenvalue q, respectively. The transi-
tion probabilities are

p−1→0 = p1→0 = 2
q
, p0→1 = p0→−1 = 1

2q , p0→0 = 1
q
.(5.6)

5.5. ASYMPTOTIC ANALYSIS OF THE STANDARD ADDITION 99

0 1−1

− q
2 + 1, . . . , q2 − 1

− q
2 + 1, . . . , 0 q

2

0, . . . , q2 − 1− q
2

Figure 5.4. Automaton recognizing SSDEs.

The constant in the error term is ξ = 1
q . The exit weights are (2, 1, 2) · q+1

q+2 .
With these transition probabilities, the asymptotic frequencies of the digits (cf. [58]) can

be computed as 
1

2(q+1) if the digit is ± q
2 ,

q+2
q(q+1) if the digit is 0,
1
q otherwise

(5.7)

by a steady state analysis of the related Markov chain using (5.5).

5.5. Asymptotic Analysis of the Standard Addition

In this section, we use the probabilistic model defined in Section 5.4 for the input sequence
of the transducers in Section 5.3.2. Then we will use Lemma 5.5.1 to obtain expectation,
variance and asymptotic normality of the number of carries.

In Sections 5.5.1 and 5.5.2, we will construct probabilistic automata whose transition
labels are the carries and where each transition has a weight corresponding to the weight
constructed in Section 5.4.

Let m and n be two functions mapping the output of a transition into the real numbers;
for brevity we write m(t) and n(t) without mentioning the output label of the transition t.
In our setting m will count the number of carries 1, and n the number of carries −1 of the
output of a transition. We consider the two random variables M` and N` which are the sum
of the values of m and n, respectively, over a path of length ` with probability the product
of the weights of this path multiplied with the exit weight.

The transition matrixA(x, y) of a probabilistic automaton withK states and two functions
m and n is a K ×K matrix whose (i, j)-th entry is∑

t : i→j
ptx

m(t)yn(t)

where pt is the weight of the transition t.
The next lemma is a slight modification of [56, Theorem 3.9] taking into account the

non-uniform distribution of the input alphabet.

Lemma 5.5.1. Let A be a strongly connected, aperiodic probabilistic automaton where all
states are final. Let m and n be functions mapping the output of a transition into the real
numbers and A(x, y) be the associated transition matrix of the automaton, where x and y
mark m and n, respectively. Let M` and N` be the associated random variables as defined
above.

100 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

Define the function f(x, y, z) = det(I − zA(x, y)). Then the expected value of (M`, N`) is
(em, en)`+O(1) with

em = fx
fz

∣∣∣∣
(1,1,1)

,

en = fy
fz

∣∣∣∣
(1,1,1)

.

The variance-covariance matrix
(vm c
c vn

)
`+O(1) has the entries

vm = f2
x(fzz + fz) + f2

z (fxx + fx)− 2fxfzfxz
f3
z

∣∣∣∣∣
(1,1,1)

,(5.8)

vn =
f2
y (fzz + fz) + f2

z (fyy + fy)− 2fyfzfyz
f3
z

∣∣∣∣∣
(1,1,1)

,(5.9)

c = fxfy(fzz + fz) + f2
z fxy − fyfzfxz − fxfzfyz
f3
z

∣∣∣∣∣
(1,1,1)

.(5.10)

Furthermore, if vm and vn are non-zero, then M` and N` are asymptotically normally dis-
tributed, respectively. If the variance-covariance matrix is non-singular, then M` and N` are
asymptotically jointly normally distributed.

Proof. The moment generating function is
E exp(s1M` + s2N`) = [z`]e>1 (I − zA(es1 , es2))−1wF

where e1 is a unit vector with a 1 at the position of the initial state and the entries of wF
are the exit weights of the states. Since the automaton is probabilistic and aperiodic, the
unique dominant eigenvalue of A(1, 1) is 1. Thus the same arguments apply as in [56] (or
Chapter 3) after replacing “complete” by “probabilistic”. We obtain the same formulas for the
constants of the expectation, the variance and the covariance. Also the central limit theorem
follows. �

5.5.1. Standard Addition for (q, d)-expansions. To construct the probabilistic au-
tomaton, we start with the transducer in Figure 5.1, and use the weights from Section 5.4.1.

All steps in this section, including the computation of the constants in Theorem 5.1, can
be done in the mathematical software system SageMath [96] by using the included finite state
machine package described in [49] and Chapter 6. A notebook with the used code can be
found at [54].

The construction in this section is more general than needed for the case of independent
digits as in (q, d)-expansions. But discussing it here in full generality allows reusing the same
ideas for the case of dependent digits as in SSDEs later on. We will use the same construction
for SSDEs in Sections 5.5.2 and 5.7.

In this section, let A be the automaton in Figure 5.3, equipped with the weight 1
q for

every transition and the exit weight 1 for every state (by Section 5.4.1). Construct A2 as the
additive Cartesian product1 of A with itself by the following rules:

1This can also be seen as the composition of a transducer performing digitwise addition (without con-
sidering any carries) and the Cartesian product of A with itself. This corresponds to the SageMath methods
transducers.add and Transducer.cartesian_product, respectively. The composition can be computed by
the SageMath method Transducer.composition.

http://www.sagemath.org/doc/reference/combinat/sage/combinat/finite_state_machine_generators.html#sage.combinat.finite_state_machine_generators.TransducerGenerators.add
http://www.sagemath.org/doc/reference/combinat/sage/combinat/finite_state_machine.html#sage.combinat.finite_state_machine.Transducer.cartesian_product
http://www.sagemath.org/doc/reference/combinat/sage/combinat/finite_state_machine.html#sage.combinat.finite_state_machine.FiniteStateMachine.composition

5.5. ASYMPTOTIC ANALYSIS OF THE STANDARD ADDITION 101

• The states of A2 are pairs of states of A.
• There is a transition from (a, b) to (c, d) with label x+y in A2 if there are transitions
from a to c with label x and b to d with label y in A.
• The weight of a transition in A2 is the product of the weights of the two transitions
in A.
• The exit weight of a state in A2 is the product of the exit weights of the two states
in A.

The probabilistic automaton A2 recognizes all possible sequences s of digitwise sums with
the correct weights for the equidistribution on the independent (q, d)-expansions x and y.

In this section, let B be the transducer in Figure 5.1 performing the standard addition of
two (q, d)-expansions. Next, we construct S(q,d) as the composition B ◦ A2 by the following
rules:

• The states of S(q,d) are pairs of states of B and A2.
• For each pair of transitions from a to c with input label s and output label k in B
and from b to d with weight w and label s in A2, there is a transition from (a, b) to
(c, d) with weight w and label k in S(q,d).
• The exit weight of a state in S(q,d) is the exit weight of the corresponding state in
A2.

The probabilistic automaton S(q,d) recognizes the sequence of carries c with the correct weights
for the equidistribution on the independent (q, d)-expansions x and y. The probabilistic
automaton S(q,d) has three states.

To determine the transition matrix of S(q,d), we use the following lemma to compute the
number of transitions between two states. The lemma is proved by an inclusion-exclusion
argument.

Lemma 5.5.2 ([46]). Let

N(xmin, xmax, ymin, ymax, smin, smax) =
|{(x, y) ∈ Z2 | xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, smin ≤ x+ y ≤ smax}|.

Then we have

N(xmin, xmax, ymin, ymax, smin, smax) = N(0,∞, 0,∞, 0, smax − xmin − ymin)
−N(0,∞, 0,∞, 0, smax − xmin − ymax − 1)
−N(0,∞, 0,∞, 0, smax − xmax − ymin − 1)
+N(0,∞, 0,∞, 0, smax − xmax − ymax − 2)
−N(0,∞, 0,∞, 0, smin − xmin − ymin − 1)
+N(0,∞, 0,∞, 0, smin − xmin − ymax − 2)
+N(0,∞, 0,∞, 0, smin − xmax − ymin − 2)
−N(0,∞, 0,∞, 0, smin − xmax − ymax − 3)

with N(0,∞, 0,∞, 0, smax) = 0 if smax is negative and

N(0,∞, 0,∞, 0, smax) = 1
2(smax + 2)(smax + 1)

otherwise.

102 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

This gives the transition matrix in Table A.1 in the appendix where x marks carries 1
and y marks carries −1. For example, the entry in the first row and column is

(d− 1)(d− 2)
2q2 y =

∑
x,y∈D

x+y∈L+1

p0→0p0→0y = 1
q2N(d, q + d− 1, d, q + d− 1, 2d, d)y

because this entry corresponds to the transitions from −1 to −1 with input label L + 1 and
output label 1̄ in B and from (0, 0) to (0, 0) in A2.

With the transition matrix, the next theorem follows directly from Lemma 5.5.1.

Theorem 5.1. Let M` and N` be the number of carries 1 and −1, respectively, when adding
two independent random (q, d)-expansions of length `. The expected value of (M`, N`) is
(e1, e−1)`+O(1) with constants

e1 = (q + d− 1)2

2(q − 1)2 ,

e−1 = d2

2(q − 1)2 .

The variance-covariance matrix of (M`, N`) is
(v1 c
c v−1

)
`+O(1) with constants

v1 = (q + d− 1)2(q4 − 2q3d− q2d2 − 4qd2 − 2q2 − d2 + 2d+ 1)
4(q − 1)5(q + 1) ,

v−1 = d2(2q4 − q2d2 − 4q3 − 6q2d− 4qd2 + 4q2 + 6qd− d2 − 4q + 2)
4(q − 1)5(q + 1) ,

c = d(q + d− 1)(q3d+ q2d2 − q3 + 3q2d+ 4qd2 + 2q2 − 3qd+ d2 − q − d)
4(q − 1)5(q + 1) .

Furthermore, the number of carries 1 and −1 is asymptotically jointly normally distributed
for d 6= 0, −q + 1. For d = 0, M` is asymptotically normally distributed and N` = 0 because
the carry −1 does not occur. For d = −q + 1, the same holds with M` and N` exchanged.

Remark 5.5.3. The expected value for carries in the addition of (q, d)-expansions corre-
sponds to the result in [79]. There, the authors find the stationary distribution

1
2(q − 1)2 (d2, q2 − 2q + 1− 2qd+ 2d− 2d2, (q + d− 1)2)

for the states (−1, 0, 1) of the carry process. For d = −q+1
2 , this stationary distribution can

also be found in [22].

5.5.2. Standard Addition for SSDEs. To cope with the dependencies between the
digits, we have to combine the conditional probabilities of the automaton in Figure 5.4 with
the carries computed by the automaton in Figure 5.2. This is done in the same way as in
Section 5.5.1.

All steps in this section, including the computation of the constants in Theorem 5.2, can
be done in the mathematical software system SageMath [96] by using its included finite state
machine package described in [49] and Chapter 6. A notebook with the used code can be
found at [54].

In this section, let A be the automaton in Figure 5.4 equipped with the weights in (5.6)
and let B be the transducer in Figure 5.2 performing the standard addition of two SSDEs.

5.5. ASYMPTOTIC ANALYSIS OF THE STANDARD ADDITION 103

−8 −6 −4 −2 0

0

0.1

0.2

0.3

d

(c
o-
)v
ar
ia
nc

e

Variance v1
Variance v−1
Covariance c

Figure 5.5. Variances and covariance for (10, d)-expansions of Theorem 5.1.

We first construct the additive Cartesian product A2, recognizing all possible sequences
s of digitwise sums with the correct weights approximating the equidistribution on two inde-
pendent SSDEs x and y. This probabilistic automaton has 9 states.

Next, we construct SSSDE as the composition B◦A2. This probabilistic automaton recog-
nizes the sequence of carries c with the correct weights approximating the equidistribution on
two independent SSDEs x and y. We want to asymptotically analyze the number of carries
equal to 1. This gives a transducer with 45 states.

Because of symmetries (cf. Remark 5.3.1), we can simplify SSSDE such that it has only 14
states2:

Lemma 5.5.4. A probabilistic automaton can be simplified by applying the following rules:
• If between two states, there are two transitions with the same label, then these two
transitions can be combined. The weights are summed up in this process.
• Let {C1, . . . , Ck} be a partition of the states of the transducer with the following
property: If a, b ∈ Cj are two states, then there is a bijection between the transitions
leaving a and the ones leaving b which preserves the label, the weight of the transition
and into which set of the partition the transitions lead. These bijections define an
equivalence relation on the transitions leaving a set of the partition.

Then each set of the partition can be contracted to a new state. For each equiv-
alence class of transitions, there is one transition in the simplified transducer.

Thus, we obtain a 14× 14 transition matrix of SSSDE given in Table A.2 in the appendix
(using Lemma 5.5.2).

Theorem 5.2. The expected value of the number of carries equal to 1 when adding two SSDEs
of length ` is

q2 + 2q + 4
8(q + 1)2 `+O(1)

2For the actual computation, it is more efficient to already simplify A2 by the SageMath method
FiniteStateMachine.markov_chain_simplification, such that it only has 6 states.

http://www.sagemath.org/doc/reference/combinat/sage/combinat/finite_state_machine.html#sage.combinat.finite_state_machine.FiniteStateMachine.markov_chain_simplification

104 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

0 20 40 60 80 100
−0.2

0

0.2

q

(c
o-
)v
ar
ia
nc

e

Variance
Covariance

Figure 5.6. Variance and covariance for SSDEs for q = 2, . . . , 100 of Theorem 5.2.

and the variance is
7q6 + 48q5 + 159q4 + 128q3 − 48q2 − 12q − 8

64(q + 1)5(q − 1) `+O(1).

The same result holds for carries equal to −1. The covariance between carries 1 and −1
is

−q
6 + 24q5 + 33q4 + 80q3 + 120q2 − 12q − 8

64(q + 1)5(q − 1) `+O(1).

The number of carries 1 and −1 is asymptotically jointly normally distributed.

Proof. We can compute the determinant f(x, y, z) = det(I − zA(x, y)) of the transition
matrix A(x, y) in the appendix of the simplified automaton SSSDE with 14 states. Thus,
Lemma 5.5.1 implies the expected value, the variance and the central limit theorem where
the input sequence is the sum of two independent SSDEs of length ` with the approximate
equidistribution W`.

As the (exact) equidistribution P` satisfies P` = (1 +O(ξ`))W`, these results also hold for
the (exact) equidistribution. �

Remark 5.5.5. If we neglect the dependencies between two adjacent digits, we obtain a
different result: Assume that the digits are independently distributed with probabilities given
in (5.7). Then the expected value of the number of carries 1 is
q12 + 7q11 + 19q10 + 27q9 + 24q8 + 9q7 − 15q6 − 15q5 + 47q4 + 104q3 + 64q2 − 48q − 48

8(q + 1)3q2(q7 + 4q6 + 5q5 − q4 − 9q3 − 8q2 + 4)
and the variance is

1
64(7q38 + 152q37 + 1557q36 + 9958q35 + 44300q34 + 144166q33 + 349511q32

+ 622942q31 + 756995q30 + 432788q29 − 439628q28 − 1347486q27 − 1407649q26

− 466340q25 − 39181q24 − 2293904q23 − 6902413q22 − 9055044q21 − 2972395q20

5.6. VON NEUMANN’S ADDITION 105

12
q, . . . , 2q − 2

0, . . . , q − 2

0, . . . , q − 1q, . . . , 2q − 2

q − 1

Figure 5.7. Automaton to find the longest carry generating sequence for von
Neumann’s addition of two standard q-ary expansions.

+ 10157788q19 + 19040707q18 + 12034998q17 − 7655356q16 − 21471482q15

− 15688011q14 + 1495584q13 + 10611092q12 + 5762536q11 − 1482784q10

− 1794016q9 + 1000784q8 + 744768q7 − 1199872q6 − 1204224q5 + 120832q4

+ 574464q3 + 172032q2 − 73728q − 36864)
× q−4(q + 1)−6(q7 + 4q6 + 5q5 − q4 − 9q3 − 8q2 + 4)−3

× (q7 + 2q6 + q5 + q4 + q3 − 2q2 + 4)−1.

As expected, the limit for q to infinity is the same.

5.6. Von Neumann’s Addition

In this section, we analyze von Neumann’s addition algorithm for SSDEs, a parallel al-
gorithm using several iterations. This algorithm was analyzed by Knuth in [72] for standard
q-ary expansions. In [59], this analysis was extended to (q, d)-expansions and SSDEs. How-
ever, for q ≥ 4, the hardware and software available at that time made the use of the proba-
bilistic model of Section 5.4.2 computationally infeasible. The approximate model described
in Remark 5.5.5 was used instead. As Remark 5.5.5 demonstrates, this approximation may
lead to other main terms in the expectation and the variance.

As before, we choose an approximate equidistribution for all independent pairs of SSDEs
of length ` as our probabilistic input model. In contrast to the result in [59], we obtain more
natural constants occurring in the main term of the expectation and the variance.

For von Neumann’s addition of two standard q-ary digit expansions, the number of it-
erations depends on the longest subsequence (q − 1) . . . (q − 1)j with j ≥ q of the digitwise
sum s, see [72]. Such sequences can be found by an automaton with two classes of transitions
(see Figure 5.7 and [59, Figure 1]). One class corresponds to the digit (q − 1) of a carry
generating sequence and is depicted by solid lines. The other class corresponds to all other
digits (including the digit j of a carry generating sequence) and is depicted by dotted lines.
The longest consecutive run of solid edges in the automaton in Figure 5.7 corresponds to the
number of iterations of von Neumann’s addition minus 2. The asymptotic analysis of these
longest runs can be performed using the probabilistic version of the automaton in Figure 5.7.
We will extend this approach to SSDEs with arbitrary even base using a larger probabilistic
automaton in Section 5.7.

5.6.1. Algorithm. Let x and y be two SSDEs. The idea of the algorithm is to construct
the sequence of digitwise sums s = x + y and correct each position if the number at this

106 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

(1101̄2̄)4 = x = z(0) = 314
(1011̄2̄)4 = y = c(0) = 266
(21120)4 = z(1) = 600

(0001̄1̄0)4 = c(1) = −20
(021010)4 = z(2) = 580

(0000000)4 = c(2) = 0
Table 5.5. Example for von Neumann’s addition for SSDEs with q = 4. We
have t(1101̄2̄, 1011̄2̄) = 2.

position is not in the digit set or at the border of the digit set where we have to take into
account the syntactical rule.

As in [59], we define (z, c) = add(s) with s = x+ y by

c0 = 0,

cj+1 =


sgn(sj) if |sj | > q

2 ,

or |sj | = q
2 and

(sgn(sj)sj+1) mod q ≥ q
2

0 otherwise,
zj = sj − cj+1q.

Here, the choice of the carry cj+1 corresponds to the one in Algorithm 5.2. By iterating this
step we obtain (z(k+1), c(k+1)) = add(z(k) +c(k)) with z(0) = x and c(0) = y. If c(k) = 0, then
z(k) is the SSDE of the sum x + y and the algorithm stops. Note that during this process,
z(k) and c(k) are not necessarily SSDEs.

In [59], the correctness and the termination of this algorithm were proved. We denote the
number of iterations of von Neumann’s addition algorithm by t(x,y) = min{k ≥ 0 : c(k) = 0}.

5.6.2. Automaton. A description of all SSDEs x and y with t(x,y) = k is given in [59].
This description is in terms of an automaton and leads to the automaton in [59, Figure 5]
reproduced here as Figure 5.8. We use the sets L = {0, . . . , q/2 − 1}, L0 = L \ {0}, H =
{q/2 + 1, . . . , q} and Hq = H \ {q}.

From [59, Theorem 3.4], we know that t(x,y) ≤ k + 2 if and only if this automaton
traverses at most k consecutive solid transitions when reading (sj)j≥0.

Remark 5.6.1. Strictly speaking, the automaton reads the sequence (sj)j≥0 where sj =
xj + yj for j ≤ J and sj = 0 for j > J , for some J . However, most of the solid edges are
visited while j ≤ J . All transitions with label 0 lead to state 1. Those from states 2 and 7
are solid edges, all others are dotted. If the transition is in state 2 (or 7) after reading sJ , an
additional solid edge will be traversed. Thus, we have to specially treat the states 2 and 7.

5.7. Asymptotic Analysis of von Neumann’s Addition

For the asymptotic analysis, we combine the automaton in Figure 5.8 with the probabilistic
model for SSDEs from Section 5.4.2 in the same way as in Section 5.5.2.

5.7. ASYMPTOTIC ANALYSIS OF VON NEUMANN’S ADDITION 107

1

2

3

4

5

7

8

9

10 L ∪ −L

H

q
2

−H

−
q
2

−L
0

L 0
−

1

q
2

q2
−

1

H
q

q

− q
2 − 1

−
q2

−H
− 1

−
L
0

L

q 2

q

H
q

− q
2

−H

−L0 ∪ (L0 − 1)

q 2

q2 −
1

H

− q
2 − 1

−
q
2

−H − 1

−L ∪ L

q 2

H

−
q
2

−H

L
0−

L
0 +

1

q
2 + 1

q 2

H + 1

− q
2

−
q2

+
1

−
H
q

−
q

−L
L 0

q
2

H

−
q 2

−
H
q

−
q

(−L0 + 1) ∪ L0

q
2
+ 1

q
2

H + 1

−
q2

−
q 2
+

1

−H

L ∪ −
L

q
2

H

−
q2

−H

Figure 5.8. Automaton in [59, Figure 5]: t(x,y) ≤ k + 2 if and only if the
automaton traverses at most k solid edges when reading (sj)j≥0.

All steps in this section, including the computation of the constants in Theorem 5.4, can
be done in the mathematical software system SageMath [96] by using the included finite state
machine package described in [49] and Chapter 6. A notebook with the used code can be
found at [54].

We again use the automata A and A2 described in Section 5.5.2, recognizing SSDEs and
the digitwise sum of two SSDEs, respectively. As before, the next step is to construct the
Cartesian product NSSDE of the automaton B in Figure 5.8 and A2.

108 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

After simplifying this construction as described in Lemma 5.5.4, the probabilistic automa-
ton NSSDE has 12 states:

{(1, (−1, 1)), (1, (1,−1))},
{(4, (0, 0)), (9, (0, 0))},
{(5, (0, 1)), (5, (1, 0)), (10, (−1, 0)), (10, (0,−1))},(5.11)
{(2, (0, 1)), (2, (1, 0)), (7, (−1, 0)), (7, (0,−1))},
{(5, (0, 0)), (10, (0, 0))},
{(2, (0, 0)), (7, (0, 0))},
{(1, (−1, 0)), (1, (0,−1)), (1, (0, 1)), (1, (1, 0))},
{(3, (0, 1)), (3, (1, 0)), (8, (−1, 0)), (8, (0,−1))},
{(1, (0, 0))},
{(3, (0, 0)), (8, (0, 0))},
{(4, (1, 1)), (9, (−1,−1))},
{(4, (0, 1)), (4, (1, 0)), (9, (−1, 0)), (9, (0,−1))}.

In this case, the simplification is done in the same way as in Lemma 5.5.4, but also taking
into account the class (dotted or solid) of a transition. The partition of the set of states was
constructed by the symmetries between the two sequences x and y described in Remark 5.3.1,
for example {(1, (−1, 1)), (1, (1,−1))}, and the additional vertical symmetry of the automaton
in Figure 5.8, for example {(4, 1, 1), (9,−1,−1)}.

The state (1, (0, 0)) is initial and all states are final.
The next theorem is an extension of Lemma 2.5 in [59] additionally including the variance

and convergence in distribution.

Theorem 5.3. Let w`k, `, k ≥ 0, be non-negative numbers with generating function

Gk(z) = Rk(z)
Sk(z)

=
∑
`≥0

w`kz
`

such that w`,k is non-decreasing in k.
Assume that

Rk(z) = r0(z) + r1
(
z,
(z
a1

)k
, . . . ,

(z

am

)k)
,

Sk(z) = (1− z)s0(z) +
(z
a1

)k
s1(z) + s2

(
z,
(z
a1

)k
, . . . ,

(z

am

)k)
,

where r0, s0, and s1 are real polynomials in z (not depending on k). Furthermore, r1 and
s2 are real polynomials in z, (z/a1)k, . . . , (z/am)k for some m ≥ 2 and some real numbers
1 < a := a1 < |a2| ≤ |a3| ≤ · · · ≤ |am| such that each of the summands in r1 is divisible by
one of the terms (z/a1)k, . . . , (z/am)k and each of the summands in s2 is divisible by one of
the terms (z/a1)2k, (z/a2)k, . . . , (z/am)k. Assume furthermore that r0(1) 6= 0.

Then G(z) := r0(z)
(1−z)s0(z) = limk→∞Gk(z) and

G(z) =
∑
`≥0

w`z
`

with w` = w`k for k ≥ `. Additionally, w` 6= 0 for ` ≥ `0 for a suitable `0.

5.7. ASYMPTOTIC ANALYSIS OF VON NEUMANN’S ADDITION 109

Let (X`)`≥`0 be the sequence of random variables with support N0 defined by

P(X` ≤ k) = w`k
w`

.

Define
δ := s1(1)/s0(1), ρ := min (log|a2|/ log a1, 2)− 1.

If s0 does not have any zero in |z| ≤ 1 and δ > 0, then the asymptotic formula

(5.12) w`k
w`

= exp(−δ`/ak)(1 + o(1))

holds as `→∞ for k = loga `+O(1). Hence the shifted random variable X`− loga ` converges
weakly to a limiting distribution if ` runs through a subset of the positive integers such that
the fractional part {loga `} of loga ` converges.

The expected value of X` is

(5.13) EX` = loga `+ loga δ + γ

log a + 1
2 + Ψ0(loga `+ loga δ) +O

(
logρ+3 `

`ρ

)
,

the variance is

(5.14) VX` = π2

6 log2 a
+ 1

12 + Ψ1(loga `+ loga δ)−
2γ

log aΨ0(loga `+ loga δ)

−Ψ2
0(loga `+ loga δ) +O

(logρ+4 `

`ρ

)
,

where γ is the Euler–Mascheroni constant, and Ψ0(x) and Ψ1(x) are periodic functions (with
period 1 and mean value 0), given by the Fourier expansions

Ψ0(x) = − 1
log a

∑
n6=0

Γ
(
− 2nπi

log a
)
e2nπix,(5.15)

Ψ1(x) = 2
log2 a

∑
n 6=0

Γ′
(
− 2nπi

log a
)
e2nπix.(5.16)

Proof. Without loss of generality, we can assume r0(1)/s0(1) = 1, as otherwise w`k and
w` are multiplied by a constant. Thus all assumptions of [59, Lemma 2.5] are satisfied except
for the form of the denominator and numerator of Gk. However, all additional terms and
their derivatives are of order O(c−ka−k) and O(ka−kc−k), respectively, for |z| ≤ 1 + 1

k . Thus
they do not influence the proof and the result in [59, Lemma 2.5].

Let 0 ≤ k2 ≤ k3 denote the constants from [59]. The denominator Sk of Gk has exactly
one simple singularity ζk = 1+δa−k+o(a−k) in the disk {z : |z| ≤ 1+C} for some C > 0 and
k ≥ k2 (see the proof of [59, Lemma 2.5]). Since Gk and G are rational functions, Gk and G
can be continued analytically beyond their dominant singularities ζk and 1, respectively. We
have limk→∞Resz=ζk Gk(z) = Resz=1G(z) = 1. Thus [86, Theorem 1] implies (5.12) and the
limiting distribution.

The coefficients w`k and w` of z` in Gk and G, respectively, coincide for k ≥ `. Thus the
support of X` is finite. Furthermore, the condition on s0 implies that w` = 1 + O(κ`) for a
constant 0 ≤ κ < 1 by singularity analysis. Thus, the expectation is

(5.17) EX` =
∑
k≥0

kP(X` = k) =
∑̀
k=0

(
1− w`k

w`

)
=
∑̀
k=0

(1− w`k) +O(`κ`).

110 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

Then, (5.13) follows from [59, Lemma 2.5]. The second moment is

EX2
` =

∑
k≥0

k2P(X` = k) =
∑̀
k=0

(2k + 1)
(
1− w`k

w`

)
(5.18)

=
∑̀
k=0

(2k + 1)(1− w`k) +O(`2κ`).(5.19)

As
∑`
k=0(1 − w`k) has already been computed for the expectation, we are left with∑`

k=0 k(1− w`k). We use the estimate

w`k = exp(−`δ/ak)(1 +O(k/ak) +O(`k/(akck))) +O((1 + C/2)−`)

for k3 ≤ k ≤ n and c = aρ from [59]. Replacing w`k with exp(−`δ/ak) yields the error terms
(see [59])

(5.20) |w`k − exp(−`δ/ak)| =


O(`−2) for 0 ≤ k ≤ loga(`δ/(4 log `)),
O(logρ+2

a `/`ρ) for loga(`δ/(4 log `)) ≤ k ≤ 5 loga `,
O(`−3) for 5 loga ` ≤ k ≤ `.

As 1− exp(−`δ/ak) is exponentially small for k > `, we obtain

(5.21)
∑̀
k=0

k(1− w`k) =
∑
k≥0

k(1− exp(−`δ/ak)) +O
(logρ+4 `

`ρ

)
.

The Mellin transform (see [28]) of the harmonic sum F (x) =
∑
k≥0 k(1− exp(−x/ak)) is

F ∗(s) = −as

(1− as)2 Γ(s)

for −1 < <s < 0. The singular expansion of this Mellin transform at <s = 0 is

F ∗(s) � − 1
log2 a

s−3 + γ

log2 a
s−2 +

(1
12 −

1
2 log2 a

(
γ2 + π2

6
))
s−1

−
∑
n6=0

Γ(−χn)
log2 a

(s+ χn)−2 −
∑
n6=0

Γ′(−χn)
log2 a

(s+ χn)−1

for χn = 2πin
log a . Thus,

F (x) = 1
2 log2

a x+ γ

log a loga x−
1
12 + 1

2 log2 a

(
γ2 + π2

6
)

− loga x
log a

∑
n6=0

Γ(−χn) exp(2πin loga x)

+ 1
log2 a

∑
n 6=0

Γ′(−χn) exp(2πin loga x) +O(x−1).

Thus, VX` = EX2
` − (EX`)2, (5.18), (5.17), (5.13) and (5.21) give the variance as stated

in (5.14). �

5.7. ASYMPTOTIC ANALYSIS OF VON NEUMANN’S ADDITION 111

Theorem 5.4. Let q ≥ 2 be even. Then the expected number of iterations when adding two
SSDE of length ` with von Neumann’s algorithm is

(5.22) logq `+ logq δ + γ

log q + 5
2 + Ψ0(logq `+ logq δ) +O(`−1 log4 `)

where

δ = (q − 1)(4q10 + 10q9 + 18q8 − 4q7 − 10q6 + 7q5 + 44q4 − 29q3 − 8q2 − 20q + 16)
4q3(q + 1)2(4q7 − q5 − 6q4 + 8q3 + 2q − 4) ,

Ψ0(x) is a 1-periodic function with mean 0 given by the Fourier expansion

(5.23) Ψ0(x) = − 1
log q

∑
k 6=0

Γ
(
− 2kπi

log q
)
e2kπix.

The variance of the number of iterations is
(5.24)
π2

6 log2 q
+ 1

12 +Ψ1(logq `+logq δ)−
2γ

log qΨ0(logq `+logq δ)−Ψ2
0(logq `+logq δ)+O(`−1 log5 `)

where Ψ1 is a 1-periodic function with mean 0 given by the Fourier expansion

(5.25) Ψ1(x) = 2
log2 q

∑
k 6=0

Γ′
(
− 2kπi

log q
)
e2kπix.

The asymptotic formula

P`(t(x,y) ≤ k) = exp(−δ`/qk)(1 + o(1))
holds as `→∞ for k = logq `+O(1). The random variable t(X,Y)− logq ` converges weakly
to a double-exponential random variable if ` runs through a subset of the positive integers such
that the fractional part {logq `} converges.

Remark 5.7.1. A similar result for q ≥ 4 was obtained in [59] using the same probabilistic
model as in Remark 5.5.5. This changes the main term of the expected value. In [59], the
logarithm of the main term was taken to the base α−1 with α = q−1 − q−4 + O(q−5). In
contrast, we here obtain the logarithm of the main term in (5.22) to the base q, which is a
more natural constant appearing in this context.

For q = 2, this result is contained in [59].

Proof. Let P` be the (exact) equidistribution of all SSDE of length `. For k > `+ 2, we
know that P`(t(X,Y) ≤ k) = 1 because an input sequence of length ` traverses at most `
solid edges in the automaton in Figure 5.8.

If we use the approximate equidistribution W` = (1+O(ξ`))P` of all SSDE of length `, an
exponentially small error term is introduced. Because of the finite support, this error term
does not change the main term of the expectation, the variance and the distribution function.
Thus, also the limiting distribution remains the same.

We will use Theorem 5.3 with the generating function

Gk(z) =
∑
`≥0

w`kz
`

for w`k = W`(t(x,y)− 2 ≤ k), k ≥ 0. To construct this generating function, we use the same
techniques as in [59].

112 5. ANALYSIS OF CARRIES IN SIGNED DIGIT EXPANSIONS

The generating function Gk(z) counts the weighted number of paths in the automaton
NSSDE of the pattern . . .B+R{1,k}B+R{1,k} . . . where B+ is an arbitrary non-empty sequence
of dotted transitions and R{1,k} is a non-empty sequence of solid transitions of length at most
k. The first transition can be a dotted or a solid transition. We stop with either arbitrarily
many dotted transitions or at most k solid transitions, where we have to take into account
the special situation in states 2 or 7 in the automaton in Figure 5.8 (see also Remark 5.6.1):
Because of the solid transition starting in 2 and 7 with label 0, we are not allowed to stop
with k solid transitions in state 2 or 7 but only with at most k − 1 ones.

To find the generating functions for B+ and R{1,k}, we use the transition matrices for the
dotted and the solid parts of the automaton NSSDE.

Let q ≥ 6. The transition matrix R for the solid transitions of automaton NSSDE is a
12×12 matrix given in Table A.4 in the appendix (using Lemma 5.5.2). The transition matrix
B for the dotted transitions of automaton NSSDE is given in Table A.5 (using Lemma 5.5.2).
The order of the states is given in (5.11) and also in Table A.3 in the appendix.

The (matrix) generating function for arbitrary non-empty dotted paths B+ is

B+(z) = (I − zB)−1 − I.

The entry (i, j) of this matrix is the generating function of non-empty dotted paths of arbitrary
length starting in state i and leading to state j. For arbitrary non-empty solid paths, the
(matrix) generating function is

R+(z) = (I − zR)−1 − I.

To obtain the (matrix) generating function R{1,k} for non-empty solid paths R{1,k} of
length at most k, we have to restrict each entry of R+ corresponding to an infinite geometric
series to a finite geometric series.3 We will illustrate this procedure on

(5.26) −q4z + 10q3z − 3q2z2 − 24q2z + 10qz2 + 8z2

−8q4 + 8q3z − 8q2z + 8qz2 ,

the entry at position (5, 1) of R+. The partial fraction decomposition of (5.26) with respect
to z is

−(3q + 2)(q − 4)
8q + (q − 4)(q + 4)

4(q + 1) · 1
1 + z/q2 + (q − 1)(q − 2)(q − 4)

8q(q + 1) · 1
1− z/q .

By truncating the infinite geometric sum (1 − z)−1 after k + 1 summands, i.e., by replacing
it with (1− zk+1)(1− z)−1, we obtain

−(3q + 2)(q − 4)
8q + (q − 4)(q + 4)

4(q + 1) · 1− (−z/q2)k+1

1 + z/q2 + (q − 1)(q − 2)(q − 4)
8q(q + 1) · 1− (z/q)k+1

1− z/q .

Let

Mk(z) =
(

0 B+(z)
R{1,k}(z) 0

)

3It is also possible to use R{1,k}(z) = zR + · · · + zkRk = (I − zk+1Rk+1)(I − zR)−1 − I. However, this
involves a power of the symbolic matrix R with the symbolic exponent k. This would require a full symbolic
eigenvalue decomposition of R. The approach chosen here avoids this by introducing the length restriction on
each entry individually.

5.7. ASYMPTOTIC ANALYSIS OF VON NEUMANN’S ADDITION 113

be the block matrix of total size 24×24. Then, the (matrix) generating function of non-empty
paths . . .B+R{1,k}B+R{1,k} . . . is

(I −Mk(z))−1 − I.
To take into account the initial states and the exit weights in the automaton NSSDE, we

define the initial vector
u = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0).

Using the exit weights in Table A.3 in the appendix, we further define the exit vector

v> =
(q + 1
q + 2

)2
(4, 1, 2, 0, 1, 0, 2, 2, 1, 1, 4, 2; 4, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 2)>

+
(q + 1
q + 2

)2
Mk−1(z)(0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)>

taking into account the special situation with states 2 and 7 in the automaton in Figure 5.8.
Then, the generating function is

Gk(z) = u((I −Mk(z))−1 − I)v +
(q + 1
q + 2

)2

where we add the exit weight of state (1, (0, 0)) because the empty word was not counted
until now. The result is

Gk(z) =
r0(z) +

(
z
q

)k
r1
(
z,
(
z
q

)k
,
(
− z
q2
)k)

(1− z)s0(z) +
(
z
q

)k
s1(z) +

(
− z
q2
)k
s2
(
z,
(
z
q

)k
,
(
− z
q2
)k)(5.27)

with
r0(z) = 4q7(q + 1)3(4z2 − 3q2z − q3)(2qz4 − 4z4 + 8q3z2 − q5z2 − 6q4z2 + 4q7),
s0(z) = 4q7(q + 1)(q + 2)2(z + q)(z − q2)(2qz4 − 4z4 + 8q3z2 − q5z2 − 6q4z2 + 4q7),
s1(z) = −(q + z)z2(q + 2)2q4(4q12 + 6q11z + 2q10z2 − 4q11 − 24q10z

− 8q9z2 + 24q10 + 26q9z + 4q8z2 + 5q7z3 − 7q6z4 − 48q9

− 20q8z + 18q7z2 − 9q6z3 + 34q5z4 + 5q4z5 + 32q8 + 36q6z2

− 32q5z3 − 59q4z4 − 25q3z5 − 112q5z2 + 84q4z3 + 40q3z4

+ 44q2z5 + 64q4z2 − 48q3z3 + 4q2z4 − 36qz5 − 16qz4 + 16z5)

and some polynomials r1 and s2 in z, (z/q)k and (−z/q2)k with coefficients in Q[q]. The
polynomial s0 does not have any zeros in the closed unit disc. We have r0(1) 6= 0 and δ > 0.

For q ≤ 4, the construction of the generating function Gk(z) is the same, only the matrices
R and B and the vectors u and v are slightly different. Nevertheless, (5.27) including the
definitions of all the occurring polynomials is still valid.

By Theorem 5.3, we obtain the expectation, the variance, the distribution function and
the limiting distribution of the non-negative truncation of t(x,y) − 2. From (5.20) and the
monotonicity of w`k, we know that w`−2 = w`−1 = O(`−2). Therefore, the results transfer to
the random variable t(x,y) as stated in the theorem. �

CHAPTER 6

Automata and Transducers in the SageMath Mathematical
Software System

This chapter is a tutorial for the finite state machine package within the mathematical
software system SageMath. The package is included in SageMath since version 5.13 [94],
see [48] and was developed in the framework of this thesis. Its idea is to conveniently work
with automata and transducers. Thus, all results of this thesis are implemented as methods of
this finite state machine package and the examples are computed by using them accordingly.

This chapter corresponds to the tutorial [49], which is submitted for publication. The code
of the finite state machine package can be found at http://git.sagemath.org/sage.git/
tree/src/sage/combinat/finite_state_machine.py?id=6.7 and http://git.sagemath.
org/sage.git/tree/src/sage/combinat/finite_state_machine_generators.py?id=6.7.
This chapter and the package itself are joint work with Clemens Heuberger and Daniel Krenn.

6.1. Introduction

6.1.1. Automata and Transducers. Automata and transducers are studied as an ob-
ject and used as a tool in discrete mathematics and theoretical computer science. To clarify
those terms we start with an informal description. An automaton reads the letters of an input
string using a finite memory. When finished, it either accepts its input or not. A transducer
additionally writes an output string. A common way to model those machines are a set of
states together with transitions from one state to another. This can also be seen as a directed
graph.

At the beginning, the current state of the automaton or transducer is one of its initial
states. Whenever a letter is read, the current state changes according to its outgoing transi-
tions (or more precisely, to the input labels of its outgoing transitions, which were assigned at
creation time). If we are working with a transducer, then, whenever some transition is used,
a word can be written as output, too. If, after reading the whole input, the current state is
one of the machine’s final states, then the input gets accepted (otherwise rejected).

For our purposes, the set of states will always be finite, and therefore, we use finite state
machine as an umbrella term for automaton and transducer. For a general reference on
automata and transducers, see Hopcroft, Motwani and Ullman [65] or Sakarovitch [90].

6.1.2. Finite State Machines in SageMath. For the last couple of years, more and
more researchers are using the free and open source mathematical software system Sage-
Math [97]. It offers an immense amount of mathematical objects combined with algorithms
for working with them. Contributions to its code-base are subjected to a transparent peer-
review process.

This tutorial introduces the finite state machine module implemented in and contributed
to SageMath by the authors. One of our main motivations was to allow the use of the mathe-
matical objects available in SageMath in the construction and manipulation of automata and

115

http://git.sagemath.org/sage.git/tree/src/sage/combinat/finite_state_machine.py?id=6.7
http://git.sagemath.org/sage.git/tree/src/sage/combinat/finite_state_machine.py?id=6.7
http://git.sagemath.org/sage.git/tree/src/sage/combinat/finite_state_machine_generators.py?id=6.7
http://git.sagemath.org/sage.git/tree/src/sage/combinat/finite_state_machine_generators.py?id=6.7

116 6. AUTOMATA AND TRANSDUCERS IN SAGEMATH

transducers. On the other hand, mathematical objects associated with finite state machines
such as the underlying digraph or its (weighted) adjacency matrix can then further be pro-
cessed in SageMath to e.g. compute asymptotic expressions. This process is illustrated in
Section 6.3.

It should also be mentioned that one of the authors wrote a similar unpublished package
for Mathematica [104], which is used in [6–8,37,43,45,47,57,60–64]. But this implementation
was of limited scope and the rise of SageMath made it clear that it is ripe for a redesigned
version. Having the finite state machine module readily available in a publicly available and
continuously maintained system also leads to more transparency in the computational parts
of publications.

There are quite a lot of implementations for finite state machines available [73]. One
of the fastest libraries is OpenFST [82], for which a Python interface [87] exists, too. But
since it is written in C/C++, it does not work well with the mathematical objects defined in
SageMath. Other non-Python modules are, for example, [3, 13, 92]. There also exist a couple
of Python packages, e.g. [4, 32, 88], which can also be found on the Python-Wiki1. Some of
those are specialized (and thus not flexible enough) and implement only partial support for
both automata and transducers. It seems that some of them are even out-dated and not
developed any further.

6.1.3. What Can You Find in This Tutorial? The aim of this piece of work is to
demonstrate some of the functionality of the developed finite state machines package in the
form of a tutorial. Detailed documentation of the available methods and their parameters can,
as usual, be found in the SageMath documentation2. There, further examples are presented
as well.

Along the way, a new result on a digit system related to the non-adjacent form [89] is
proved. The new digit expansion we consider has base 2 and uses the digit set {−2,−1, 0, 1, 2}.
We compute the expected value of the Hamming weight, i.e., the number of non-zero digits,
of this digit expansion of integers less than 2k. Although the digit set is larger than the one
for the non-adjacent form, it turns out that the expected value of this new digit expansion
is worse than that of the standard binary expansion and therefore worse than that of the
non-adjacent form.

Let us give a brief overview on how to show the result mentioned above and why it is an
enormous advantage to use SageMath for constructing and simulating automata and trans-
ducers. We start at the beginning, namely with the generation, which can be done in several
ways. First, we can simply list all transitions of a finite state machine (cf. Section 6.2.1).
Second, we can use transition functions written in SageMath to construct a transducer (cf.
Section 6.2.3, but we will use it in several other places as well). This is of course possible for
any type of finite state machine. Another way is to construct machines by suitably combining
smaller building blocks: We manipulate and combine several finite state machines properly
(Sections 6.2.4 and 6.3.2). A couple of variants and more advanced constructions will also
be shown (see, for example, Sections 6.3.3 and 6.3.5). When the desired automaton or trans-
ducer is finally constructed, we obtain for example the adjacency matrix (Section 6.3.7) or
the asymptotic behavior of the output (cf. Section 6.3.8) by just one function call.

1The Python-Wiki can be found at https://wiki.python.org/moin/FiniteStateMachine.
2The SageMath documentation of the finite state machine module can be found at http://www.sagemath.

org/doc/reference/combinat/sage/combinat/finite_state_machine.html.

https://wiki.python.org/moin/FiniteStateMachine
http://www.sagemath.org/doc/reference/combinat/sage/combinat/finite_state_machine.html
http://www.sagemath.org/doc/reference/combinat/sage/combinat/finite_state_machine.html

6.2. THREE KINDS OF CALCULATING THE NON-ADJACENT FORM AS A WARM-UP 117

Note that all of these steps can be computed within SageMath. Thus, we can use ev-
erything offered by the mathematical software system and construct powerful finite state
machines to analyze, without shuffling data from one system to another.

6.1.4. How Do I Get This Awesome New Finite State Machines Package? To
keep it short: it is already included in SageMath3. If you are using the finite state machines
package of SageMath in your own work, please let us know.

6.2. Three Kinds of Calculating the Non-Adjacent Form as a Warm-Up

Before we start with our tutorial, let us have a look at the terms used in this section. We
start by explaining the classical non-adjacent form, abbreviated as NAF, cf. Reitwiesner [89],
of an integer. It is a representation with base 2 and digits −1, 0 and +1, such that two
neighboring digits are not both non-zero. This means that we forbid 11, 1̄1, 11̄ and 1̄1̄ in the
digit expansion where we abbreviated 1̄ = −1. For example, we have
(6.1) 12 = 1 · 16 + 0 · 8− 1 · 4 + 0 · 2 + 0 · 1 = (101̄00)2.

It can be shown that this leads to a unique representation of each integer, cf. Reitwiesner [89].
Note that in the following (more precisely, from Section 6.2.4 on), we will add a summand

0 · 1
2 at expansions like (6.1). This means, we write

12 = (101̄00.0)2.

It will turn out that this is convenient, since we are working with halves at lot in our main
example in Section 6.3.

Usually, digit expansions are written from the most significant digit (on the left-hand
side) to the least significant digit (on the right-hand side). In the context of transducers, this
is often reversed. There, a digit expansion starts on left-hand side with the least significant
digit and the most significant one is on the right-hand side. Therefore, we have two different
notations. For digit expansions, like in (101̄00)2, we write the least significant digit on the
right. For inputs and outputs of finite state machines, like in [0, 0, -1, 0, 1], we write the
least significant digit on the left. Consequently, we also speak of trailing zeros if we append
zeros after the most significant digit.

6.2.1. Creating a Transducer from Scratch. In [60, Figure 2], a transducer for con-
verting the binary expansion of an integer n into its non-adjacent form is given. We reproduce
it here as Figure 6.1 and directly translate it into SageMath. We write4

NAF1 = Transducer([(’I’, 0, 0, None), (’I’, 1, 1, None),
(0, 0, 0, 0), (0, 1, 1, 0),
(1, 0, 0, 1), (1, 2, 1, -1),
(2, 1, 0, 0), (2, 2, 1, 0)],

initial_states=[’I’], final_states=[0],
input_alphabet=[0, 1])

3The basic version was included into SageMath 5.13 [94] (for details see the relevant ticket [48] on the
SageMath trac server). A huge bunch of features is included in SageMath 6.2. Some of the latest improvements
are either already merged in the current development branch or still in some branch on the trac server. To
work with all features of this tutorial, use SageMath 6.7 or later.

4This document was created using SageTEX, which comes along with SageMath. It allows the following:
We type SageMath source code directly in the TEX-document, this code is then executed by SageMath and the
corresponding outputs (results) are typeset here.

118 6. AUTOMATA AND TRANSDUCERS IN SAGEMATH

I

0 1 2
0
| ε

1
| ε

0 | 0

1 | 0

0 | 1

1 | 1

0 | 0

1 | 0

Figure 6.1. Transducer to compute the non-adjacent form.

to construct this transducer with states ’I’ (the string I), 0, 1 and 2 (the integers 0, 1 and
2, respectively). The list of 4-tuples defines the transitions of the transducer. For example,
(1, 2, 1, -1) is a transition from state 1 to state 2 with input 1 and output −1. Input here
means reading a (more precisely, the next) digit of the binary expansion of n. The output
is a digit of the non-adjacent form, written step-by-step. Note that we read and write the
expansions from the least significant digit to the most significant one and we start at the digit
corresponding to 20 = 1.

This approach required us to manually model the digit conversion as a transducer (or, in
this particular instance, by a reference to available literature). Shouldn’t there be an easier
method using the full power of SageMath? For sure, and we will do so in later examples to
demonstrate various approaches for constructing transducers.

6.2.2. The Non-Adjacent Form of Twelve. For convenience, we set NAF = NAF1. We
can use this transducer to compute the non-adjacent form of, for example, our lucky number
twelve5, which was used already at the beginning of this warm-up. We decide to use

sage.combinat.finite_state_machine.FSMOldProcessOutput = False
which activates the “new behavior” of the finite state machine package6 in SageMath.

Then, as a first try, we type
NAF_of_12 = NAF(12.digits(base=2))

and get
ValueError: Invalid input sequence.

5You may ask why 12 is our lucky number. In fact, it is not! But it is not that bad. This number is,
beside the actual 13 our second lucky number. The reason of preferring 12 over 13 is simple and of educational
character: The digit expansion (used in this tutorial) of 13 is too symmetric. This may lead to confusion
whether those expansions are read from left to right or the other way round.

6There was change in the output behavior of a couple of commands. In order not to break backwards
compatibility, the old output is deprecated for at least a year, according to the SageMath Developer’s Guide.
After that, the new behavior will be the default. In order to get the new one already, we use the flag
FSMOldProcessOutput. Similarly, there is FSMOldCodeTransducerCartesianProduct, which we are going to
set to False as well. This is no longer needed in 2016.

6.2. THREE KINDS OF CALCULATING THE NON-ADJACENT FORM AS A WARM-UP 119

An error message? Huh? So did we make a mistake in our construction? Fortunately not;
the transducer has just not finished yet: With the input [0, 0, 1, 1], which is the binary
expansion of 12 from the least significant to the most significant digit, we would stop in the
non-final state with label 2, as we can see by typing

NAF.process(12.digits(base=2)),
which results in (False, 2, [0, 0, -1]). Here, the first component indicates whether the
input is accepted or not, the second component is the label of the state where we stopped,
and the third component of this triple is the output of the transducer if this state would be
final.

By adding enough trailing zeros to the expansion of 12, we reach a final state and we
ensure that all carries are processed. We type

NAF_of_12 = NAF(12.digits(base=2) + [0, 0, 0])
and get the output [0, 0, -1, 0, 1, 0]. This list corresponds to the digits of the non-
adjacent form of 12, starting with the digit corresponding to 1 at the left, and then continuing
with the digits corresponding to 2, 4, 8, 16, and 32.

But do we really want to think about trailing zeros? This should be done by SageMath.
And that is possible by

NAF = NAF.with_final_word_out(0)
This function constructs a final output for every state. The final output of a state is appended
to the “normal” output if we stop in this state reading some input. Transducers with final
output are called subsequential, cf. [91]. The method with_final_word_out computes the
final output by reading as many zeros as necessary to reach a final state (if possible). The
corresponding output is then the final output.

Now, we compute the non-adjacent form of 12 again by
NAF_of_12 = NAF(12.digits(base=2))

without thinking about how many trailing zeros we have to add. And the result [0, 0, -1,
0, 1] is still the same as before (except for one trailing zero).

6.2.3. Calculating the Non-Adjacent Form with Less Thinking. A different ap-
proach to construct a transducer calculating the non-adjacent form is via a transition function.

To get this function, we think about the following algorithm rewriting the binary expan-
sion to the NAF: We start by determining the least significant digit n0 of the non-adjacent
form of the integer n. This can be decided by looking at the two least significant digits of the
binary expansion: If n is even, then the digit of the non-adjacent form is zero, if n is odd, it
is 1 or 1̄, depending on n modulo 4. As the next step of this algorithm, we have to compute
the non-adjacent form of 1

2(n− n0).
Reformulating this as a transition function leads to the following code:

def NAF_transition(state_from, read):
if state_from == ’I’:

write = None
state_to = read
return (state_to, write)

current = 2*read + state_from
if current % 2 == 0:

write = 0

120 6. AUTOMATA AND TRANSDUCERS IN SAGEMATH

elif current % 4 == 1:
write = 1

else:
write = -1

state_to = (current - write) / 2
return (state_to, write)

Here, % is the remainder of the integer division in SageMath.
The transducer defined by this transition function can be built by

NAF2 = Transducer(NAF_transition,
initial_states=[’I’],
final_states=[0],
input_alphabet=[0, 1]).with_final_word_out(0)

We can check whether the two transducers are the same by
NAF == NAF2

which, luckily, yields True.

6.2.4. A Third Construction of the Same Transducer. The non-adjacent form can
also be constructed in the following way. We start with the binary expansions of 3n

2 and of
n
2 . We subtract each digit of n

2 from the corresponding digit of 3n
2 . This leads to a digit

expansion of n with digits {−1, 0, 1} in base 2. One can prove that this digit expansion is the
non-adjacent form of n (cf. [17], see also [100, Theorem 10.2.4]).

For this construction we need a few simple transducers (as, for example one for multiplying
by 3 and one for performing subtraction), which we combine later appropriately. We will also
reuse these machines in a later example for the 3

2–
1
2 -non-adjacent form in Section 6.3.

So let us start with the times-3-transducer, i.e., one that takes a binary number n as input
and outputs 3n (in binary). We do this, as above, by a transition function. We define

def f(state_from, read):
current = 3*read + state_from
write = current % 2
state_to = (current - write) / 2
return (state_to, write)

to compute the next output digit (write) and the new carry (encoded in state_to) from the
input digit (read) and the previous carry (state_from) in the multiplication-by-3-algorithm.
From this transition function we get the following transducer:

Triple = Transducer(f, input_alphabet=[0, 1],
initial_states=[0],
final_states=[0]).with_final_word_out(0)

Eager as we are, we test this construction by
three_times_four = Triple(4.digits(base=2))

and get [0, 0, 1, 1], which equals 12. Hooray!
Back to business; our goal is to calculate binary-3n minus binary-n. To do so, we need

a transducer which acts as identity (for the binary-n-part), i.e., writes out everything that is
read in. Here,

Id = Transducer([(0, 0, 0, 0), (0, 0, 1, 1)],
initial_states=[0], final_states=[0],

6.2. THREE KINDS OF CALCULATING THE NON-ADJACENT FORM AS A WARM-UP 121

input_alphabet=[0, 1])
does the trick. Maybe this is a good point to mention that a couple of of commonly used
transducers are already prebuilt in SageMath. We get the above also by

prebuiltId = transducers.Identity([0, 1])
where we just have to specify the alphabet [0, 1]. Note that there are various different
transducers in the generator transducers; take a look into its SageMath documentation.

As a next step (before we dart for subtraction), we want a transducer which produces
pairs of the digits of 3n and of n simultaneously. This can be achieved with

sage.combinat.finite_state_machine.\
FSMOldCodeTransducerCartesianProduct = False

Combined_3n_n = Triple.cartesian_product(Id).relabeled()
As in Section 6.2.2, we have to deactivate backwards compatible code; in this instance we
have to use FSMOldCodeTransducerCartesianProduct.

The function relabeled() just renames the states with integers starting at 0 (more
precisely, returns a copy with relabeled states). Let us test this machine by

twelve_and_four = Combined_3n_n(4.digits(base=2))
It returns [(0, 0), (0, 0), (1, 1), (1, None)], which seems to be correct.

We further construct a transducer computing the component-wise difference: Its input is
a pair like the output of Combined_3n_n and the output is the difference of the two entries.
We use the operator

def g(read0, read1):
return ZZ(read0) - ZZ(read1)

and generate the transducer by
Minus = transducers.operator(g, input_alphabet=[None, -1, 0, 1])

Here we use that ZZ(None) is 0.
Of course, there is not only a prebuilt identity transducer, but also a prebuilt transducer

for component-wise difference, available as
prebuiltMinus = transducers.sub([-1, 0, 1])

But unfortunately, it can only work with numbers, and we also want to subtract None. The
final outputs are the reason: Sometimes, one component is None. For example, the final
output of state 1 is

final_word_out = Combined_3n_n.state(1).final_word_out
which yields [(1, None)].

Finally, by
NAF3 = Minus(Combined_3n_n).relabeled()

we obtain a transducer computing the non-adjacent form of 3n− n = 2n. This means, NAF3
is built as the composition of Minus and Combined_3n_n, which could also have been called
by using the method .composition.

Let us test this construction. For example,
NAF_of_12 = NAF3(12.digits(base=2))

returns [0, 0, 0, -1, 0, 1]. This is, once again, the non-adjacent form expansion of 12,
see (6.1), but now starting with the digit corresponding to 1

2 (which is obviously 0) at the
left, and then continuing with the digits corresponding to 1, 2, 4, 8, 16 and 32.

122 6. AUTOMATA AND TRANSDUCERS IN SAGEMATH

Now we have finished our warm-up and are ready for the main example, which will be
dealing with 3

2–
1
2 -non-adjacent form.

6.3. An Example: Three-Half–One-Half-Non-Adjacent Forms

We start this example by answering the question posed by the following title.

6.3.1. What is the Three-Half–One-Half-Non-Adjacent Form? We have (or, at
least, we can calculate) the non-adjacent forms of 3n

2 and of n2 . Inspired by the construction of
the NAF presented in Section 6.2.4 (as a remainder: we subtracted two binary expansions),
we do this also with these two NAFs. Thus, we define the 3

2–
1
2 -non-adjacent form of an

integer n as the digit expansion obtained by subtracting each digit of the NAF of n
2 from

the corresponding digit of the NAF of 3n
2 . This leads to a digit expansion of n with digits

{−2,−1, 0, 1, 2} in base 2. For example, the 3
2–

1
2 -non-adjacent form of—guess which number

comes now—12 is
12 = (10010.0)2 − (101̄0.0)2 = (11̄020.0)2.

In a first step, we want to calculate this new expansion; see the following sections. On the
one hand, we are lazy and want to reuse as much as possible from the already constructed
finite state machines. On the other hand, we are motivated to use our new knowledge working
with those automata and transducers. So the idea will be to combine several already known
transducers appropriately.

6.3.2. Combining Small Transducers to a Larger One. We first combine the trans-
ducers Triple and NAF to obtain a transducer to compute the non-adjacent form of 3n. For
convenience, we choose NAF = NAF3, because there we do not have to consider an empty
output of a transition.

We combine by
NAF3n = NAF(Triple)

which builds the composition of the two transducers involved and therefore gives us a gadget
to get the non-adjacent form of 3n.

Next, we construct a transducer which builds the non-adjacent forms of 3n and n simul-
taneously by

Combined_NAF_3n_n = NAF3n.cartesian_product(NAF).relabeled()

The function cartesian_product sounds familiar, since we used it in Section 6.2.4 already.
It constructs a transducer which writes pairs of digits.

Finally, by reusing Minus, we construct
T = Minus(Combined_NAF_3n_n).relabeled()

This transducer finally computes the 3
2–

1
2 -non-adjacent form. To get some information like

the number of states of the finite state machine, we type T in SageMath and see

Transducer with 9 states

Let us continue with the example from the beginning. To compute this new digit expansion
of 12, we type

expansion_of_12 = T(12.digits(base=2))

6.3. AN EXAMPLE: THREE-HALF–ONE-HALF-NON-ADJACENT FORMS 123

The output is
[0, 0, 0, 2, 0, -1, 1]

which is the 3
n–

1
2 -non-adjacent form of 12 starting with the digit corresponding to 1

4 . This
starting digit has the following reasons: The output of the transducer NAF starts with the
digit corresponding to 1

2 when reading n. We use the non-adjacent form of n
2 , which thus

starts at the digit corresponding to 1
4 .

6.3.3. An Alternative Construction. We had three different ways to get a transducer
calculating the non-adjacent form, so you might guess that there are also several ways to
construct a transducer computing the 3

2–
1
2 -non-adjacent form of n. Indeed there are. In

this part of the tutorial, we describe another way, which uses a more general function of our
SageMath’s finite state machines module.

We want a transducer processing NAF3n and NAF (we already have constructed those two)
at the same time and subtracting the output. Therefore we define the functions

def minus(trans1, trans2):
if trans1.word_in == trans2.word_in:

return (trans1.word_in,
trans1.word_out[0] - trans2.word_out[0])

else:
raise LookupError

and
from itertools import izip_longest
def final_minus(state1, state2):

return [x - y for x, y in
izip_longest(state1.final_word_out,

state2.final_word_out,
fillvalue=0)]

to combine the output of two transitions or two final outputs. As we have only one input
sequence and we want to process both transducers simultaneously, we can only combine
transitions with the same input digit. Otherwise, an exception is raised. In contrast to our
first construction, we pad the final outputs with zeros instead of the default padding with
None as it is used by cartesian_product.

Now we construct the new transducer as the product of NAF3n and NAF by
Talternative = NAF3n.product_FiniteStateMachine(

NAF, minus,
final_function=final_minus).relabeled()

This transducer computes the new digit expansion of n from the least significant digit to the
most significant one, starting with the digit corresponding to 1

4 .
The function product_FiniteStateMachine combines any two transitions of NAF3n and

NAF and constructs a new transition in T with input and output defined by minus. Of course, in
this example, product_FiniteStateMachine is much to complicated. But, one can combine
finite state machines in a much more general way with product_FiniteStateMachine than
with cartesian_product (we used the latter already twice in some constructions above).

With this construction, we obtain the same transducer as T. This can also be checked by
Talternative == T

124 6. AUTOMATA AND TRANSDUCERS IN SAGEMATH

which yields True.

6.3.4. Getting a Picture. Up to now, we constructed a couple of finite state machines,
but we never really saw one. So, the time has come to do this. With T.plot() we get a
first graphical representation of the transducer. This was easy, but we are not fully satisfied.
For example, the labels of the transitions are missing. And, maybe we want to rearrange
the states a little bit to obtain less crossings of the transitions. This can be achieved by
the following: view(T) gives a second graphical representation of the transducer. Maybe the
arrangement of the states is not nicer than before, but we will improve this a lot.

We first choose the coordinates of the states by
T.set_coordinates({

0: (-2, 0.75),
1: (0, -1),
2: (-6, -1),
3: (6, -1),
4: (-4, 2.5),
5: (-6, 5),
6: (6, 5),
7: (4, 2.5),
8: (2, 0.75)})

Furthermore, in transition labels, we prefer “1” over “−1”, so we choose the appropriate
formatting function. Additionally, we choose in which directions the arrows with the final
outputs should point.

T.latex_options(format_letter=T.format_letter_negative,
accepting_where={

0: ’right’,
1: ’below’,
2: ’below’,
3: ’below’,
4: 60,
5: ’above’,
6: ’above’,
7: 120,
8: ’left’},

accepting_show_empty=True)
Now, the output of view(T) in SageMath looks like Figure 6.2. The $-symbol signals the end
of the input sequence. Further customization of the underlying TikZ-code is possible, see the
documentation of latex_options.

On the other hand, by typing latex(T) we get this TikZ-code for the transducer, which
can be used to include a figure of the finite state machine in a LATEX-document, like it was
done for this tutorial. To succeed, we need to use the package tikz and to include the line
\usetikzlibrary{automata} in the preamble of the LATEX-document.

6.3.5. Recognizing Everything. We did a good job computing the 3
2–

1
2 -non-adjacent

form of an integer in the sections above. But what if someone gives you an expansion and
asks: “Is this one of the leading actors of this play?”, what should we tell him? Reformulated
this means that we want to recognize whether a given digit expansion is a 3

2–
1
2 -non-adjacent

6.3. AN EXAMPLE: THREE-HALF–ONE-HALF-NON-ADJACENT FORMS 125

0
$ | ε

1

$
|2

01

2

$
|0

1

3

$
|0

11

4

$ |
1

5

$
|1

01

6

$
|1

1

7

$ | 111

8
$ | 0201

0 | 0

1 | 0

0 | 2 1 | 2

0 |
0

1
|0

0
|0

1 | 0

0 | 1

1 | 1

0
|1

1 | 1

1
|1

0 | 1

0 |
1

1 |
1

0 |
0

1 | 0

Figure 6.2. Transducer T to compute the 3
2–

1
2 -non-adjacent form of n.

form or not. Since we are used to finite state machines now, we look for a method involving
those. This will now bring automata into play. An automaton reads the expansion and says
either yes (a correct expansion) or no.

From the previous constructions we have the transducer T which writes 3
2–

1
2 -non-adjacent

forms. Now, we simply “forget” the input of every transition and only consider the output
labels, which we can do by

R = T.output_projection()

The automaton R recognizes exactly all 3
2–

1
2 -non-adjacent forms.

By typing R, we see that this automaton has 10 states. As some of the transitions have a
longer input word (type R.transitions() to see all transitions), we call

R = R.split_transitions()

to split up these transitions into paths. Then we have more states than before: There are
23 states.

Calling the function R.is_deterministic() returns False, which clearly means our au-
tomaton is non-deterministic. As deterministic automata are much nicer, we ask for an
equivalent deterministic automaton by

Rdet = R.determinisation()

Be aware that the determinisation of an automaton can increase the number of states expo-
nentially. But in our case, Rdet has only 22 states, that are less than before. Why is that?
The reason is that some states are equivalent in some sense. Thus, they could be “merged”.

126 6. AUTOMATA AND TRANSDUCERS IN SAGEMATH

But first, let us test this automaton with the previously calculated expansion of 12. We
can check whether it accepts it by Rdet(expansion_of_12), like it should be. We get True,
which we expected.

As mentioned above, the determinisation can lead to very large automata. Thus, we ask
ourselves the following question: Does there exist an equivalent automaton with less states?
To find out, let us try

Rdet1 = Rdet.minimization()
to get a minimal equivalent deterministic automaton. Fortunately, it has only 17 states. For
this minimization Moore’s algorithm [76] was used.

One might toss in that Moore’s minimization algorithm only works well for deterministic
automata, but Rdet originally comes from the non-deterministic automaton R. Is there a
possibility to directly minimize R? Yes, of course! We should try another algorithm for non-
deterministic automata: Brzozowski’s algorithm [14]. Let us apply it directly on R, without
determinizing before, by

Rdet2 = R.minimization(algorithm=’Brzozowski’)
which leads to the same minimal deterministic automaton with 17 states we already had.

So, now we are also familiar with automata in SageMath. But, a lot more is possible with
these machines than mentioned here.

6.3.6. (Heavy) Weights. Our original motivation to study the 3
2–

1
2 -non-adjacent form

comes from analyzing its (Hamming) weight, i.e., the number of non-zero digits. We want to
compare the Hamming weights of the different digit expansions: standard binary expansion,
non-adjacent form and 3

2–
1
2 -non-adjacent form.

Using the ideas of the constructions above, this is also not difficult. We construct a
transducer computing the weight of the input by

def weight(state_from, read):
write = ZZ(read != 0)
return (0, write)

Weight = Transducer(weight, input_alphabet=srange(-2, 2+1),
initial_states=[0], final_states=[0])

Here, we use the convention that the integer values of True and False are 1 and 0, respectively.
The transducer Weight writes a 1 for every non-zero input, which means that the weight is
encoded in unary in the output string.

There exists also a prebuilt transducer which we could use instead of our own construction.
It is available via

prebuiltWeight = transducers.weight(srange(-2, 2+1))
Composing the weight-transducer with the one calculating the 3

2–
1
2 -NAF by

W = Weight(T)
we end up with a transducer with 9 states computing the Hamming weight of this new digit
expansion of n (given in binary). For instance,

W(12.digits(base=2))
yields [0, 0, 0, 1, 0, 1, 1], which means the weight is 3.

The transducer W can be further simplified by preponing the output in each state by the
command

W.prepone_output()

6.3. AN EXAMPLE: THREE-HALF–ONE-HALF-NON-ADJACENT FORMS 127

The function prepone_output tries to shift the output letters from one transition to another
one such that each letter is written as early as possible. If, for example, all transitions leaving
a (non-final) state write the same output letter 0, then this letter 0 can already be written
by all transitions leading to this state.

If you wonder, why there is the word “heavy” in the title of this part, read on until the
end of the example.

6.3.7. Also Possible: Adjacency Matrices. We want to asymptotically analyze the
expected value of the Hamming weight of our new digit expansion for all positive integers less
than 2k, where k is a fixed large number.

One way to do the asymptotic analysis is by means of the adjacency matrix of the trans-
ducer. By

var(’y’)
def am_entry(trans):

return y^add(trans.word_out) / 2
A = W.adjacency_matrix(entry=am_entry)

we obtain a matrix, where the entry at (k, l) is yh if there is a transition with output h from
state k to l and 0 otherwise. The generated adjacency matrix is

A =



1
2

1
2 y

2 0 0 0 0 0 0 0
0 0 1

2
1
2 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0

0 0 0 0 0 0 1
2

1
2 0

1
2 0 0 0 0 1

2 y 0 0 0
0 0 1

2 y 0 0 0 0 1
2 y 0

0 0 0 1
2 y

1
2 y 0 0 0 0

0 0 0 0 0 0 1
2 y 0 1

2
0 1

2 y
2 0 0 0 0 0 0 1

2


.

For y = 1, this is simply the transition probability matrix. Its normalized left eigenvector
to the eigenvalue 1 gives the stationary distribution. We write

(pi_not_normalized,) = (A.subs(y=1) - A.parent().identity_matrix())\
.left_kernel().basis()

pi = pi_not_normalized / pi_not_normalized.norm(p=1)
and obtain (1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9).

To obtain the average Hamming weight of the 3
2–

1
2 -non-adjacent form, we compute the

expected output vector in each state as
expected_output = derivative(A, y).subs(y=1)\

* vector(len(W.states())*[1])

and obtain
(
1, 0, 0, 0, 1

2 , 1, 1, 1
2 , 1

)
. Note that the derivative here simply computes the

expected output for every transition. We could also have called adjacency_matrix with a
suitably modified entry function.

The expected density is therefore
pi * expected_output

which yields 5
9 . This means the main term of the average number of non-zero digits in 3

2–
1
2 -

NAFs of length k is 5
9k.

128 6. AUTOMATA AND TRANSDUCERS IN SAGEMATH

6.3.8. More on the Hamming Weight by Letting SageMath Do the Work. We
have the impression that the analysis of the previous section could be done (or, rephrased,
we want that this should be done) more automatically. Indeed, we can let SageMath do the
work for us, and it does it very well: It not only outputs the mean of the Hamming weight,
but also its variance and more.

By
var(’k’)
moments = W.asymptotic_moments(k)

we obtain a dictionary whose entries are the expectation and the variance of the sum of the
output of the transducer, and the covariance of the sum of the output and the input of the
transducer (cf. [56] or Chapter 3). The probability model is the equidistribution on all input
sequences of a fixed length k.

The expected value of the Hamming weight of the 3
2–

1
2 -non-adjacent form is

5
9 k +O (1).

as k tends to infinity.
This function can also give us the variance of the Hamming weight of the 3

2–
1
2 -non-adjacent

form, which is
44
243 k +O (1).

Of course we could do a lot more beautiful stuff. We could construct a bivariate generating
function. From this, we could obtain more terms and better error terms of the asymptotic
expansion of the expected value, the variance and higher moments. We could also prove a
central limit theorem. And everything by using the full power of SageMath. But, again, we
do not want to go into details here. We refer to the book of Flajolet and Sedgewick [30] for
details on the asymptotic analysis of digit expansions and other sequences.

6.3.9. What Does This Mean for This Brand New Digit Expansion? In the
past several sections, we were able to calculate the average Hamming weight of the 3

2–
1
2 -non-

adjacent form asymptotically by the help of the finite state machines package in SageMath.
But what does this result tell us?

So let us compare this digit expansion with the standard binary expansion and the clas-
sical non-adjacent form. The expected value of the Hamming weight of the standard binary
expansion can be calculated by

expectation_binary = Id.asymptotic_moments(k)[’expectation’]
which gives

1
2 k +O (1).

Of course, it was not necessary to use the transducer Weight here (since we only have digits
0 and 1). The expected value of the weight of the NAF can be obtained with the code

expectation_NAF = Weight(NAF).asymptotic_moments(k)[’expectation’]
which produces the weight

1
3 k +O (1),

cf. also [77]. Note that in this particular construction (only digits −1, 0 and 1), we could
have used the prebuilt transducer

6.4. SELECTED TECHNICAL DETAILS OF THE FINITE STATE MACHINES PACKAGE 129

Abs = transducers.abs([-1, 0, 1])
instead of the weight-transducer.

Both values are (asymptotically) less than the
5
9 k +O (1)

of the 3
2–

1
2 -non-adjacent form, which means that those expansions have much more non-zero

digits and therefore are much “heavier” on average. So, from a point of view of minimizing
the Hamming weight, this new expansion is disappointing: it uses more digits but realizes a
larger weight.

6.4. Selected Technical Details of the Finite State Machines Package

This final section contains a few selected technical details of the implementation of the
finite state machines module in SageMath [73].

6.4.1. Class Structure. The class structure of the finite state machine bundle is quite
easy. We have one main class, namely FiniteStateMachine (inheriting from SageObject),
which contains most of the code and algorithms, in particular the ones valid generally. De-
rived from it, there is a class Automaton, which contains, among others, routines to produce
deterministic automata and to minimize automata. Similarly, a class Transducer is also de-
rived from FiniteStateMachine. As an example, transducers, in contrast to general finite
state machines and automata, provide a method to be simplified.

Moreover, states and transitions are encapsulated in classes FSMState and FSMTransition,
respectively.

6.4.2. Storage of States and Transitions. Each instance of the class
FiniteStateMachine

stores a list of its states. Additionally (to speed up searching) a dictionary mapping labels of
states to references of states is created.

Transitions are stored differently. Each state in the finite state machine holds a list of its
outgoing transitions. Since a transition also knows the state to which it is going, we can see
this as a variant of an asymmetric doubly-linked list7.

All input and output words of transitions and states are always stored as lists, even if the
output word is only one digit.

7Note that we do not have a “fully” doubly-linked list, since we do not store a list of incoming transitions
to a state. In the rare occasions where we need a “fully” doubly-linked list, e.g. prepone_output, we build it
on the fly.

APPENDIX A

Transition Matrices

This appendix contains the transition matrices used in Chapter 5.

(−1, (0, 0)) (0, (0, 0)) (1, (0, 0))
(d− 1)(d− 2)y −2d2 − 2dq + q2 + 6d+ 3q − 4 (d+ q − 1)(d+ q − 2)x

(d− 1)dy −2d2 − 2dq + q2 + 2d+ q (d+ q)(d+ q − 1)x
(d+ 1)dy −2d2 − 2dq + q2 − 2d− q (d+ q + 1)(d+ q)x

Table A.1. Transition matrix of S(q,d) in Section 5.5.1 multiplied with 2q2.
The order of the states is given in the first line.

131

132
A
.T

R
A
N
SIT

IO
N

M
A
T
R
IC

E
S

6q2 − 12q + 8 4 4(q − 2)y 8 4q − 8 4q − 8 8 4(q − 2)x (q − 2)(q − 4)y (q − 2)(q − 4)x 2y 2x 4q − 8 4q − 8
8q2 0 0 0 0 0 0 0 0 0 0 0 0 0

6(q − 2)q 0 4qy 0 0 4q 0 0 2(q − 2)qy 0 0 0 8q 0
2(qy + 2q − 2y)q 0 4qy2 0 0 4qy 0 0 2(q − 2)qy2 0 0 0 0 0

2(3q − 2)q 0 4(q − 2)y 8 0 4q − 8 8 0 2(q − 2)(q − 4)y 0 0 0 8q − 16 0
2(3q − 2)q 0 0 8 4q − 8 0 8 4(q − 2)x 0 2(q − 2)(q − 4)x 0 0 0 8q − 16

2(qx+ 2q − 2x)q 0 0 0 4qx 0 0 4qx2 0 2(q − 2)qx2 0 0 0 0
6(q − 2)q 0 0 0 4q 0 0 4qx 0 2(q − 2)qx 0 0 0 8q
6(q − 2)q 4 4qy 8 4q − 16 4q 8 4(q − 4)x (q − 2)qy (q − 4)(q − 6)x 2y 2x 4q 4q − 16
6(q − 2)q 4 4(q − 4)y 8 4q 4q − 16 8 4qx (q − 4)(q − 6)y (q − 2)qx 2y 2x 4q − 16 4q
4(q − 2)q 0 0 0 0 0 0 0 4(q − 2)qy 0 0 0 16q 0
4(q − 2)q 0 0 0 0 0 0 0 0 4(q − 2)qx 0 0 0 16q

(3qy + 3q − 6y − 2)q 4 4qy2 0 4q − 8 4qy 0 4(q − 2)x (q − 2)qy2 (q − 2)(q − 4)x 2y 2x 0 0
(3qx+ 3q − 6x− 2)q 4 4(q − 2)y 0 4qx 4q − 8 0 4qx2 (q − 2)(q − 4)y (q − 2)qx2 2y 2x 0 0

Table A.2. Transition matrix of SSSDE for q ≥ 8 in Section 5.5.2 multiplied with 8q2. The order of the
states is {(0, (0, 0))}, {(0, (−1, 1)), (0, (1,−1))}, {(−1, (−1, 0)), (−1, (0,−1))}, {(−q/2, (−1, 0)), (−q/2, (0,−1))},
{(0, (−1, 0)), (0, (0,−1))}, {(0, (0, 1)), (0, (1, 0))}, {(q/2, (0, 1)), (q/2, (1, 0))}, {(1, (0, 1)), (1, (1, 0))}, {(−1, (0, 0))},
{(1, (0, 0))}, {(−1, (−1,−1))}, {(1, (1, 1))}, {(−q/2, (0, 0))}, {(q/2, (0, 0))}.

(1, (−1, 1)) (4, (0, 0)) (5, (0, 1)) (2, (0, 1)) (5, (0, 0)) (2, (0, 0)) (1, (−1, 0)) (3, (0, 1)) (1, (0, 0))} (3, (0, 0)) (4, (1, 1)) (4, (0, 1))

4 1 2 2 1 1 2 2 1 1 4 2

Table A.3. Exit weights of NSSDE in Section 5.7 multiplied with
(q+2
q+1

)2. As discussed in (5.11), the states of
NSSDE are equivalence classes of states. For brevity, we list one representative for each state of NSSDE to give
the order of the states.

A
.T

R
A
N
SIT

IO
N

M
A
T
R
IC

E
S

133

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4q(q − 2) 8q 0 0
0 0 0 0 0 0 0 0 0 0 0 0
4 (q − 4)(q − 6) 0 8 0 4(q − 4) 4(q − 4) 8 3q(q − 2) 4q 4 4(q − 4)
0 0 0 0 0 0 0 0 0 0 0 0
0 2(q − 2)(q − 4) 0 8 0 8(q − 2) 4(q − 2) 8 2q(q − 2) 0 0 4(q − 2)
0 0 0 0 0 0 0 0 0 0 0 0
0 (q − 2)(q − 4) 0 8 0 4(q − 2) 4(q − 2) 8 (3q − 4)(q − 2) 4(q − 2) 0 4(q − 2)
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Table A.4. Transition matrix R for the solid transitions in NSSDE for q ≥ 6 in Section 5.7 multiplied with 8q2.
The order of the states is the same as in Table A.3.

134
A
.T

R
A
N
SIT

IO
N

M
A
T
R
IC

E
S

0 0 0 0 0 0 0 0 8q2 0 0 0
4 2(q − 4)2 0 16 0 8(q − 3) 8(q − 3) 16 2(3q − 2)(q − 2) 8(q − 1) 4 8(q − 3)
0 2(q − 2)(q − 4) 0 8 0 8(q − 2) 4(q − 2) 8 2q(3q − 2) 0 0 4(q − 2)
0 2(q − 2)(q − 4) 0 8 0 8(q − 2) 4(q − 2) 8 2q(q − 2) 0 0 4(q − 2)
4 2(q − 2)(q − 4) 0 8 0 4(q − 2) 8(q − 2) 8 6q2 − 12q + 8 4(q − 2) 4 8(q − 2)
0 (q − 2)(q − 4) 0 8 0 4(q − 2) 4(q − 2) 8 (3q − 4)(q − 2) 4(q − 2) 0 4(q − 2)
0 2(q − 2)(q − 4) 16 0 8(q − 2) 0 4(q − 2) 0 2q(3q − 2) 0 0 4(q − 2)
0 0 0 0 0 0 0 0 4q2 0 0 0
4 2(q − 2)(q − 4) 16 0 8(q − 2) 0 8(q − 2) 0 6q2 − 12q + 8 0 4 8(q − 2)
4 (q − 2)(q − 4) 0 0 0 0 4(q − 2) 0 q(3q − 2) 0 4 4(q − 2)
0 4(q − 2)(q − 4) 0 0 0 16(q − 2) 0 0 4q(q − 2) 16q 0 0
0 2(q − 2)(q − 4) 0 8 0 8(q − 2) 4(q − 2) 8z 6(q − 2)q 8q 0 4(q − 2)

Table A.5. Transition matrix B for the dotted transitions in NSSDE for q ≥ 6 in Section 5.7 multiplied with
8q2. The order of the states is the same as in Table A.3.

Bibliography

[1] Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences: Theory, applications, generalizations, Cam-
bridge University Press, Cambridge, 2003.

[2] Tom Apostol, Modular functions and Dirichlet series in number theory, Graduate Texts in Mathematics,
vol. 41, Springer, New York, 1976.

[3] The automata standard template library, http://astl.sourceforge.net, 2013.
[4] automata 0.1.4, https://pypi.python.org/pypi/automata, 2013.
[5] Roberto Avanzi, A note on the signed sliding window integer recoding and a left-to-right analogue, Selected

Areas in Cryptography: 11th International Workshop, SAC 2004, Waterloo, Canada, August 9-10, 2004,
Revised Selected Papers (H. Handschuh and A. Hasan, eds.), Lecture Notes in Comput. Sci., vol. 3357,
Springer-Verlag, Berlin, 2005, pp. 130–143.

[6] Roberto Avanzi, Clemens Heuberger, and Helmut Prodinger, Scalar multiplication on Koblitz curves.
Using the Frobenius endomorphism and its combination with point halving: Extensions and mathematical
analysis, Algorithmica 46 (2006), 249–270.

[7] , Arithmetic of supersingular Koblitz curves in characteristic three, Cryptology ePrint Archive,
Report 2010/436, 2010.

[8] , Redundant τ -adic expansions I: Non-adjacent digit sets and their applications to scalar multi-
plication, Des. Codes Cryptogr. 58 (2011), 173–202.

[9] Guy Barat and Peter J. Grabner, Distribution of binomial coefficients and digital functions, J. London
Math. Soc. (2) 64 (2001), no. 3, 523–547.

[10] Nader L. Bassily and Imre Kátai, Distribution of the values of q-additive functions on polynomial se-
quences, Acta Math. Hungar. 68 (1995), no. 4, 353–361.

[11] Edward A. Bender and Fred Kochman, The distribution of subword counts is usually normal, European
J. Combin. 14 (1993), no. 4, 265–275.

[12] Valérie Berthé and Michel Rigo (eds.), Combinatorics, automata and number theory, Encyclopedia Math.
Appl., vol. 135, Cambridge University Press, Cambridge, 2010.

[13] dk.brics.automaton 1.11-8, http://www.brics.dk/automaton/, 2011.
[14] Janusz A. Brzozowski, Canonical regular expressions and minimal state graphs for definite events, Proc.

Sympos. Math. Theory of Automata (New York, 1962), Polytechnic Press of Polytechnic Inst. of Brook-
lyn, Brooklyn, N.Y., 1963, pp. 529–561.

[15] Emmanuel Cateland, Suites digitales et suites k-régulières, Ph.D. thesis, Université Bordeaux, 1992.
[16] Seth Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM J. Alg. Disc. Meth. 3

(1982), no. 3, 319–329.
[17] S. H. Chang and N. Tsao-Wu, Distance and structure of cyclic arithmetic codes, Proc. Hawaii Interna-

tional Conference on System Sciences, vol. 1, 1968, pp. 463–466.
[18] Louis H. Y. Chen, Hsien-Kuei Hwang, and Vytas Zacharovas, Distribution of the sum-of-digits function

of random integers: a survey, 11 (2014), 177–236.
[19] Jean Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161–176.
[20] Hubert Delange, Sur la fonction sommatoire de la fonction “somme des chiffres”, Enseignement Math.

(2) 21 (1975), 31–47.
[21] Persi Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probability 5

(1977), no. 1, 72–81.
[22] Persi Diaconis and Jason Fulman, Combinatorics of balanced carries, Adv. in Appl. Math. 59 (2014),

8–25.
[23] NIST Digital library of mathematical functions, http://dlmf.nist.gov/, Release 1.0.9 of 2014-08-29,

2010, Online companion to [81].

135

http://dx.doi.org/10.1017/CBO9780511546563
http://www.springer.com/us/book/9780387971278
http://astl.sourceforge.net
https://pypi.python.org/pypi/automata
http://dx.doi.org/10.1007/978-3-540-30564-4_9
http://dx.doi.org/10.1007/s00453-006-0105-9
http://dx.doi.org/10.1007/s00453-006-0105-9
http://dx.doi.org/10.1007/s00453-006-0105-9
http://eprint.iacr.org/2010/436
http://dx.doi.org/10.1007/s10623-010-9396-6
http://dx.doi.org/10.1007/s10623-010-9396-6
http://dx.doi.org/10.1112/S0024610701002630
http://dx.doi.org/10.1007/BF01874349
http://dx.doi.org/10.1007/BF01874349
http://dx.doi.org/10.1006/eujc.1993.1030
http://www.cambridge.org/us/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/combinatorics-automata-and-number-theory
http://www.brics.dk/automaton/
http://dx.doi.org/10.1137/0603033
http://dx.doi.org/10.1214/12-PS213
http://dx.doi.org/10.1214/12-PS213
http://dx.doi.org/10.1016/0022-314X(86)90067-3
http://dx.doi.org/10.1214/aop/1176995891
http://dx.doi.org/10.1016/j.aam.2014.05.005
http://dlmf.nist.gov/
http://dlmf.nist.gov/

136 BIBLIOGRAPHY

[24] Michael Drmota, Random trees, SpringerWienNewYork, 2009.
[25] Michael Drmota and Peter J. Grabner, Analysis of digital functions and applications, Combinatorics,

automata and number theory (Valérie Berthé and Michel Rigo, eds.), Encyclopedia Math. Appl., vol.
135, Cambridge University Press, Cambridge, 2010, pp. 452–504.

[26] Philippe Dumas, Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational se-
quences, Linear Algebra Appl. 438 (2013), no. 5, 2107–2126.

[27] Philippe Dumas, Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Alge-
braic and analytic approaches collated, Theoret. Comput. Sci. 548 (2014), 25–53.

[28] Philippe Flajolet, Xavier Gourdon, and Philippe Dumas, Mellin transforms and asymptotics: Harmonic
sums, Theoret. Comput. Sci. 144 (1995), 3–58.

[29] Philippe Flajolet, Peter Grabner, Peter Kirschenhofer, Helmut Prodinger, and Robert F. Tichy, Mellin
transforms and asymptotics: digital sums, Theoret. Comput. Sci. 123 (1994), 291–314.

[30] Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cam-
bridge, 2009.

[31] Philippe Flajolet, Wojciech Szpankowski, and Brigitte Vallée, Hidden word statistics, J. ACM 53 (2006),
no. 1, 147–183.

[32] FSA – Finite State Automaton processing in Python, http://www.osteele.com/software/python/fsa/,
2004.

[33] Chris D. Godsil and Gordon Royle, Algebraic graph theory, Graduate texts in mathematics, vol. 207,
Springer Verlag (New York), 2001.

[34] Massimiliano Goldwurm and Roberto Radicioni, Average value and variance of pattern statistics in
rational models, Implementation and Application of Automata (Jan Holub and Jan Žďárek, eds.), Lecture
Notes in Comput. Sci., vol. 4783, Springer Berlin Heidelberg, 2007, pp. 62–72.

[35] Peter J. Grabner, Clemens Heuberger, and Helmut Prodinger, Subblock occurrences in signed digit rep-
resentations, Glasg. Math. J. 45 (2003), 427–440.

[36] , Distribution results for low-weight binary representations for pairs of integers, Theoret. Comput.
Sci. 319 (2004), 307–331.

[37] , Counting optimal joint digit expansions, Integers 5 (2005), no. 3, A9.
[38] Peter J. Grabner, Clemens Heuberger, Helmut Prodinger, and Jörg Thuswaldner, Analysis of linear

combination algorithms in cryptography, ACM Trans. Algorithms 1 (2005), 123–142.
[39] Peter J. Grabner and Hsien-Kuei Hwang, Digital sums and divide-and-conquer recurrences: Fourier

expansions and absolute convergence, Constr. Approx. 21 (2005), 149–179.
[40] Peter J. Grabner and Jörg M. Thuswaldner, On the sum of digits function for number systems with

negative bases, Ramanujan J. 4 (2000), no. 2, 201–220.
[41] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics. A foundation for

computer science, second ed., Addison-Wesley, 1994.
[42] Florian Heigl and Clemens Heuberger, Analysis of digital expansions of minimal weight, 23rd Intern.

Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms
(AofA’12), DMTCS Proceedings, 2012, pp. 399–411.

[43] Clemens Heuberger, Minimal expansions in redundant number systems: Fibonacci bases and greedy al-
gorithms, Period. Math. Hungar. 49 (2004), 65–89.

[44] , Hwang’s quasi-power-theorem in dimension two, Quaest. Math. 30 (2007), 507–512.
[45] , Redundant τ -adic expansions II: Non-optimality and chaotic behaviour , Math. Comput. Sci. 3

(2010), 141–157.
[46] Clemens Heuberger, Personal Communication, 2013–2015.
[47] Clemens Heuberger, Rajendra Katti, Helmut Prodinger, and Xiaoyu Ruan, The alternating greedy ex-

pansion and applications to left-to-right algorithms in cryptography, Theoret. Comput. Sci. 341 (2005),
55–72.

[48] Clemens Heuberger, Daniel Krenn, and Sara Kropf, Finite state machines, automata, transducers, http:
//trac.sagemath.org/ticket/15078, 2013, module in Sage 5.13.

[49] Clemens Heuberger, Daniel Krenn, and Sara Kropf, Automata and transducers in the computer algebra
system Sage, 2014, arXiv:1404.7458 [cs.FL].

[50] Clemens Heuberger and Sara Kropf, Analysis of the binary asymmetric joint sparse form, Combin.
Probab. Comput. 23 (2014), 1087–1113.

http://dx.doi.org/10.1007/978-3-211-75357-6
http://dx.doi.org/10.1017/CBO9780511777653.010
http://dx.doi.org/10.1016/j.laa.2012.10.013
http://dx.doi.org/10.1016/j.laa.2012.10.013
http://dx.doi.org/10.1016/j.tcs.2014.06.036
http://dx.doi.org/10.1016/j.tcs.2014.06.036
http://dx.doi.org/10.1016/0304-3975(95)00002-E
http://dx.doi.org/10.1016/0304-3975(95)00002-E
http://dx.doi.org/10.1016/0304-3975(92)00065-Y
http://dx.doi.org/10.1016/0304-3975(92)00065-Y
http://dx.doi.org/10.1017/CBO9780511801655
http://dx.doi.org/10.1145/1120582.1120586
http://www.osteele.com/software/python/fsa/
http://dx.doi.org/10.1007/978-1-4613-0163-9
http://dx.doi.org/10.1007/978-3-540-76336-9_8
http://dx.doi.org/10.1007/978-3-540-76336-9_8
http://dx.doi.org/10.1017/S0017089503001368
http://dx.doi.org/10.1017/S0017089503001368
http://dx.doi.org/10.1016/j.tcs.2004.02.012
http://www.integers-ejcnt.org/vol5-3.html
http://dx.doi.org/10.1145/1077464.1077473
http://dx.doi.org/10.1145/1077464.1077473
http://dx.doi.org/10.1007/s00365-004-0561-x
http://dx.doi.org/10.1007/s00365-004-0561-x
http://dx.doi.org/10.1023/A:1009831204394
http://dx.doi.org/10.1023/A:1009831204394
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAQ0131
http://dx.doi.org/10.1007/s10998-004-0523-x
http://dx.doi.org/10.1007/s10998-004-0523-x
http://dx.doi.org/10.2989/16073600709486217
http://dx.doi.org/10.1007/s11786-009-0014-9
http://dx.doi.org/10.1016/j.tcs.2005.03.050
http://dx.doi.org/10.1016/j.tcs.2005.03.050
http://trac.sagemath.org/ticket/15078
http://trac.sagemath.org/ticket/15078
http://www.sagemath.org/
http://arxiv.org/abs/1404.7458
http://arxiv.org/abs/1404.7458
http://dx.doi.org/10.1017/S0963548314000352

BIBLIOGRAPHY 137

[51] Clemens Heuberger and Sara Kropf, FiniteStateMachine.asymptotic_moments: New method, http://
trac.sagemath.org/ticket/16145, 2014, merged in Sage 6.3.beta2.

[52] Clemens Heuberger, Sara Kropf, and Helmut Prodinger, Asymptotic analysis of the sum of the output
of transducers, 25th International Conference on Probabilistic, Combinatorial, and Asymptotic Methods
for the Analysis of Algorithms (AofA’14), DMTCS-HAL Proceedings Series, vol. BA, 2014, pp. 145–156.

[53] , Analysis of carries in signed digit expansions, 2015, arXiv:1503.08816 [math.CO].
[54] Clemens Heuberger, Sara Kropf, and Helmut Prodinger, Analysis of carries in signed digit expansions—

online resources, http://arxiv.org/src/1503.08816, 2015.
[55] Clemens Heuberger, Sara Kropf, and Helmut Prodinger, Output sum of transducers: Limiting distribution

and periodic fluctuation, Electron. J. Combin. 22 (2015), no. 2, 1–53.
[56] Clemens Heuberger, Sara Kropf, and Stephan Wagner, Variances and covariances in the central limit

theorem for the output of a transducer , European J. Combin. 49 (2015), 167–187.
[57] Clemens Heuberger and James A. Muir, Minimal weight and colexicographically minimal integer repre-

sentations, J. Math. Cryptol. 1 (2007), 297–328.
[58] Clemens Heuberger and Helmut Prodinger, On minimal expansions in redundant number systems: Al-

gorithms and quantitative analysis, Computing 66 (2001), 377–393.
[59] , Carry propagation in signed digit representations, European J. Combin. 24 (2003), 293–320.
[60] , Analysis of alternative digit sets for nonadjacent representations, Monatsh. Math. 147 (2006),

219–248.
[61] , The Hamming weight of the non-adjacent-form under various input statistics, Period. Math.

Hungar. 55 (2007), 81–96.
[62] , On α-greedy expansions of numbers, Adv. in Appl. Math. 38 (2007), 505–525.
[63] , Analysis of complements in multi-exponentiation algorithms using signed digit representations,

Internat. J. Found. Comput. Sci. 20 (2009), 443–453.
[64] Clemens Heuberger, Helmut Prodinger, and Stephan G. Wagner, Positional number systems with digits

forming an arithmetic progression, Monatsh. Math. 155 (2008), 349–375.
[65] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Introduction to automata theory, languages,

and computation, Addison-Wesley series in computer science, Addison-Wesley, 2001.
[66] Hsien-Kuei Hwang, On convergence rates in the central limit theorems for combinatorial structures,

European J. Combin. 19 (1998), 329–343.
[67] Imre Kátai and József Mogyoródi, On the distribution of digits, Publ. Math. Debrecen 15 (1968), 57–68.
[68] Tosio Kato, Perturbation theory for linear operators, Springer, 1976.
[69] Peter Kirschenhofer, Subblock occurrences in the q-ary representation of n, SIAM J. Algebraic Discrete

Methods 4 (1983), no. 2, 231–236.
[70] , On the variance of the sum of digits function, Number-Theoretic Analysis (Edmund Hlawka

and Robert F. Tichy, eds.), Lecture Notes in Mathematics, vol. 1452, Springer Berlin Heidelberg, 1990,
pp. 112–116.

[71] Peter Kirschenhofer and Helmut Prodinger, Subblock occurrences in positional number systems and Gray
code representation, J. Inform. Optim. Sci. 5 (1984), no. 1, 29–42.

[72] Donald E. Knuth, The average time for carry propagation, Nederl. Akad. Wetensch. Indag. Math. 40
(1978), 238–242.

[73] Daniel Krenn, Personal Communication, 2014.
[74] Blake Madill and Narad Rampersad, The abelian complexity of the paperfolding word, Discrete Math.

313 (2013), no. 7, 831–838.
[75] John W. Moon, Some determinant expansions and the matrix-tree theorem, Discrete Math. 124 (1994),

163–171.
[76] Edward F. Moore, Gedanken experiments on sequential machines, Automata Studies (Claude E. Shannon

and John McCarthy, eds.), Annals of Mathematics Studies, no. 34, Princeton Universty Press, 1956,
pp. 129–153.

[77] François Morain and Jorge Olivos, Speeding up the computations on an elliptic curve using addition-
subtraction chains, RAIRO Inform. Théor. Appl. 24 (1990), 531–543.

[78] James A. Muir and Douglas R. Stinson, Minimality and other properties of the width-w nonadjacent
form, Math. Comp. 75 (2006), 369–384.

[79] Fumihiko Nakano and Taizo Sadahiro, A generalization of carries processes and Eulerian numbers, Adv.
in Appl. Math. 53 (2014), 28–43.

http://trac.sagemath.org/ticket/16145
http://trac.sagemath.org/ticket/16145
http://hal.inria.fr/hal-01077251
http://hal.inria.fr/hal-01077251
http://arxiv.org/abs/1503.08816
http://arxiv.org/src/1503.08816
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p19
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p19
http://dx.doi.org/10.1016/j.ejc.2015.03.004
http://dx.doi.org/10.1016/j.ejc.2015.03.004
http://dx.doi.org/10.1515/jmc.2007.015
http://dx.doi.org/10.1515/jmc.2007.015
http://dx.doi.org/10.1007/s006070170021
http://dx.doi.org/10.1007/s006070170021
http://dx.doi.org/10.1016/S0195-6698(03)00008-8
http://dx.doi.org/10.1007/s00605-005-0364-6
http://dx.doi.org/10.1007/s10998-007-3081-z
http://dx.doi.org/10.1016/j.aam.2006.08.005
http://dx.doi.org/10.1142/S012905410900667X
http://dx.doi.org/10.1007/s00605-008-0008-8
http://dx.doi.org/10.1007/s00605-008-0008-8
http://www.pearsonhighered.com/educator/product/Introduction-to-Automata-Theory-Languages-and-Computation/9780321455369.page
http://www.pearsonhighered.com/educator/product/Introduction-to-Automata-Theory-Languages-and-Computation/9780321455369.page
http://dx.doi.org/10.1006/eujc.1997.0179
http://dx.doi.org/10.1007/978-3-642-66282-9
http://dx.doi.org/10.1137/0604025
http://dx.doi.org/10.1007/BFb0096983
http://dx.doi.org/10.1080/02522667.1984.10698776
http://dx.doi.org/10.1080/02522667.1984.10698776
http://dx.doi.org/10.1016/1385-7258(78)90041-0
http://dx.doi.org/10.1016/j.disc.2013.01.005
http://dx.doi.org/10.1016/0012-365X(92)00059-Z
http://dx.doi.org/http://www.numdam.org/item?id=ITA_1990__24_6_531_0
http://dx.doi.org/http://www.numdam.org/item?id=ITA_1990__24_6_531_0
http://dx.doi.org/10.1090/S0025-5718-05-01769-2
http://dx.doi.org/10.1090/S0025-5718-05-01769-2
http://dx.doi.org/10.1016/j.aam.2013.09.005

138 BIBLIOGRAPHY

[80] Pierre Nicodème, Bruno Salvy, and Philippe Flajolet, Motif statistics, Theoret. Comput. Sci. 287 (2002),
no. 2, 593–617.

[81] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST Handbook
of mathematical functions, Cambridge University Press, New York, 2010.

[82] OpenFst Library 1.3.4, http://openfst.org, 2013.
[83] William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55–66.
[84] Manfred Peter, The asymptotic distribution of elements in automatic sequences, Theoret. Comput. Sci.

301 (2003), 285–312.
[85] Helmut Prodinger, Personal Communication, 2013–2014.
[86] Helmut Prodinger and Stephan Wagner, Bootstrapping and double-exponential limit laws, Discrete Math.

Theor. Comput. Sci. 17 (2015), no. 1, 123–144.
[87] pyopenfst, http://code.google.com/p/pyopenfst/, 2013.
[88] python-automata 1.0, https://code.google.com/p/python-automata/, 2007.
[89] George W. Reitwiesner, Binary arithmetic, Advances in Computers, Vol. 1, Academic Press, New York,

1960, pp. 231–308.
[90] Jacques Sakarovitch, Elements of automata theory, Cambridge University Press, Cambridge, 2009, Trans-

lated from the 2003 French original by Reuben Thomas.
[91] Marcel-Paul Schützenberger, Sur une variante des fonctions sequentielles, Theoret. Comput. Sci. 4

(1977), no. 1, 47–57.
[92] SFST 1.4.6h, http://www.cis.uni-muenchen.de/~schmid/tools/SFST/, 2013.
[93] Claude E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379–423.
[94] William A. Stein et al., Sage Mathematics Software (Version 5.13), The Sage Development Team, 2013,

http://www.sagemath.org.
[95] , Sage Mathematics Software (Version 6.3), The Sage Development Team, 2014, http://www.

sagemath.org.
[96] , Sage Mathematics Software (Version 6.5), The Sage Development Team, 2015, http://www.

sagemath.org.
[97] , Sage Mathematics Software (Version 6.7), The Sage Development Team, 2015, http://www.

sagemath.org.
[98] Gérard Tenenbaum, Sur la non-dérivabilité de fonctions périodiques associées à certaines formules som-

matoires, The mathematics of Paul Erdős, I (Ronald L. Graham and Jaroslav Nešetřil, eds.), Algorithms
Combin., vol. 13, Springer, Berlin, 1997, pp. 117–128.

[99] Jörg M. Thuswaldner, Summatory functions of digital sums occurring in cryptography, Period. Math.
Hungar. 38 (1999), no. 1-2, 111–130.

[100] Jacobus Hendricus van Lint, Introduction to coding theory, Graduate Texts in Mathematics, vol. 86,
Springer, 1992.

[101] John von Neumann, Collected works. Vol. V: Design of computers, theory of automata and numerical
analysis, The Macmillan Co., New York, 1963.

[102] Stephan Wagner, Personal Communication, 2013.
[103] Edmund T. Whittaker and George N. Watson, A course of modern analysis, Cambridge University Press,

Cambridge, 1963, Reprint of the fourth (1927) edition.
[104] Wolfram Research, Inc., Mathematica (Version 5.2), 2005.
[105] Antoni Zygmund, Trigonometric series, vol. I & II combined, Cambridge University Press, Cambridge,

2002.

http://dx.doi.org/10.1016/S0304-3975(01)00264-X
http://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/nist-handbook-mathematical-functions
http://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/nist-handbook-mathematical-functions
http://openfst.org
http://dx.doi.org/10.1090/S0002-9947-1964-0161372-1
http://dx.doi.org/10.1016/S0304-3975(02)00587-X
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/viewArticle/2781
http://code.google.com/p/pyopenfst/
https://code.google.com/p/python-automata/
http://dx.doi.org/10.1016/S0065-2458(08)60610-5
http://www.cambridge.org/us/academic/subjects/mathematics/logic-categories-and-sets/elements-automata-theory
http://dx.doi.org/10.1016/0304-3975(77)90055-X
http://www.cis.uni-muenchen.de/~schmid/tools/SFST
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://dx.doi.org/10.1007/978-3-642-60408-9_10
http://dx.doi.org/10.1007/978-3-642-60408-9_10
http://dx.doi.org/10.1023/A:1004715619287
http://www.cambridge.org/us/academic/subjects/mathematics/real-and-complex-analysis/course-modern-analysis-4th-edition-1?format=PB
http://www.wolfram.com/mathematica/
http://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/trigonometric-series-3rd-edition

	List of Figures
	List of Tables
	Chapter 1. Introduction
	Chapter 2. Output Sum of Transducers: Limiting Distribution and Periodic Fluctuation
	2.1. Introduction
	2.2. Results
	2.2.1. Notions
	2.2.2. Moments and Limiting Distribution
	2.2.3. Eigenvalues and Eigenvectors of the Transition Matrix
	2.2.4. Fourier Coefficients
	2.2.5. Non-differentiability
	2.2.6. Recursions

	2.3. Asymptotic Distribution—Proof of Theorem 2.1
	2.3.1. Transition Matrix and its Eigenvectors
	2.3.2. Characteristic Function
	2.3.3. Moments
	2.3.4. Hölder Continuity
	2.3.5. Limiting Distribution

	2.4. Fourier Coefficients—Proof of Theorem 2.2
	2.5. Non-Differentiability—Proof of Theorem 2.3
	2.6. Recursions—Proof of Theorem 2.4

	Chapter 3. Variances and Covariances in the Central Limit Theorem for the Output of a Transducer
	3.1. Introduction
	3.2. Preliminaries
	3.3. Main Results
	3.3.1. Bounded Variance and Singular Asymptotic Variance-Covariance Matrix
	3.3.2. Algebraic Description of Independent Transducers
	3.3.3. Combinatorial Characterization of Independent Transducers

	3.4. Examples of Transducers
	3.5. Proofs of the Theorems
	3.5.1. Algebraic Description of Independent Transducers
	3.5.2. Combinatorial Characterization of Independent Transducers
	3.5.3. Bounded Variance and Singular Asymptotic Variance-Covariance Matrix

	Chapter 4. Variance and Covariance of Several Simultaneous Outputs of a Markov Chain
	4.1. Introduction
	4.2. Preliminaries
	4.3. Main Results
	4.4. Examples
	4.5. Proofs

	Chapter 5. Analysis of Carries in Signed Digit Expansions
	5.1. Introduction
	5.2. Digit Expansions
	5.2.1. (q,d)-expansions
	5.2.2. Symmetric Signed Digit Expansion

	5.3. Standard Addition
	5.3.1. Algorithms
	5.3.1.1. Standard Addition for (q,d)-expansions
	5.3.1.2. Standard Addition for SSDEs

	5.3.2. Transducers
	5.3.2.1. Standard Addition for (q,d)-expansions
	5.3.2.2. Standard Addition for SSDEs

	5.4. Approximate Equidistribution
	5.4.1. Weights for (q,d)-expansions
	5.4.2. Weights for SSDEs

	5.5. Asymptotic Analysis of the Standard Addition
	5.5.1. Standard Addition for (q,d)-expansions
	5.5.2. Standard Addition for SSDEs

	5.6. Von Neumann's Addition
	5.6.1. Algorithm
	5.6.2. Automaton

	5.7. Asymptotic Analysis of von Neumann's Addition

	Chapter 6. Automata and Transducers in the SageMath Mathematical Software System
	6.1. Introduction
	6.1.1. Automata and Transducers
	6.1.2. Finite State Machines in SageMath
	6.1.3. What Can You Find in This Tutorial?
	6.1.4. How Do I Get This Awesome New Finite State Machines Package?

	6.2. Three Kinds of Calculating the Non-Adjacent Form as a Warm-Up
	6.2.1. Creating a Transducer from Scratch
	6.2.2. The Non-Adjacent Form of Twelve
	6.2.3. Calculating the Non-Adjacent Form with Less Thinking
	6.2.4. A Third Construction of the Same Transducer

	6.3. An Example: Three-Half–One-Half-Non-Adjacent Forms
	6.3.1. What is the Three-Half–One-Half-Non-Adjacent Form?
	6.3.2. Combining Small Transducers to a Larger One
	6.3.3. An Alternative Construction
	6.3.4. Getting a Picture
	6.3.5. Recognizing Everything
	6.3.6. (Heavy) Weights
	6.3.7. Also Possible: Adjacency Matrices
	6.3.8. More on the Hamming Weight by Letting SageMath Do the Work
	6.3.9. What Does This Mean for This Brand New Digit Expansion?

	6.4. Selected Technical Details of the Finite State Machines Package
	6.4.1. Class Structure
	6.4.2. Storage of States and Transitions

	Appendix A. Transition Matrices
	Bibliography

